Formula:DLMF:25.11:E23

From DRMF
Jump to navigation Jump to search


\HurwitzZeta @ 1 - 2 n 1 3 = - π ( 9 n - 1 ) \BernoulliB 2 n 8 n 3 ( 3 2 n - 1 - 1 ) - \BernoulliB 2 n ln 3 4 n 3 2 n - 1 - ( - 1 ) n ψ ( 2 n - 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n - 1 - ( 3 2 n - 1 - 1 ) \RiemannZeta @ 1 - 2 n 2 3 2 n - 1 superscript \HurwitzZeta @ 1 2 𝑛 1 3 superscript 9 𝑛 1 \BernoulliB 2 𝑛 8 𝑛 3 superscript 3 2 𝑛 1 1 \BernoulliB 2 𝑛 3 4 𝑛 superscript 3 2 𝑛 1 superscript 1 𝑛 digamma 2 𝑛 1 1 3 2 3 superscript 6 2 𝑛 1 superscript 3 2 𝑛 1 1 superscript \RiemannZeta @ 1 2 𝑛 2 superscript 3 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\HurwitzZeta^{\prime}@{1-2n}{\tfrac{% 1}{3}}=-\frac{\pi(9^{n}-1)\BernoulliB{2n}}{8n\sqrt{3}(3^{2n-1}-1)}-\frac{% \BernoulliB{2n}\ln 3}{4n\cdot 3^{2n-1}}-\frac{(-1)^{n}{\psi^{(2n-1)}}\left(% \frac{1}{3}\right)}{2\sqrt{3}(6\pi)^{2n-1}}-\frac{\left(3^{2n-1}-1\right)% \RiemannZeta^{\prime}@{1-2n}}{2\cdot 3^{2n-1}}}}}

Constraint(s)

n = 1 , 2 , 3 , 𝑛 1 2 3 {\displaystyle{\displaystyle{\displaystyle n=1,2,3,\dots}}}


Note(s)

primes on \HurwitzZeta \HurwitzZeta {\displaystyle{\displaystyle{\displaystyle\HurwitzZeta}}} denote derivatives with respect to s 𝑠 {\displaystyle{\displaystyle{\displaystyle s}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

ζ 𝜁 {\displaystyle{\displaystyle{\displaystyle\zeta}}}  : Hurwitz zeta function : http://dlmf.nist.gov/25.11#E1
π 𝜋 {\displaystyle{\displaystyle{\displaystyle\pi}}}  : ratio of a circle's circumference to its diameter : http://dlmf.nist.gov/5.19.E4
B n subscript 𝐵 𝑛 {\displaystyle{\displaystyle{\displaystyle B_{n}}}}  : Bernoulli polynomial : http://dlmf.nist.gov/24.2#i
ln ln {\displaystyle{\displaystyle{\displaystyle\mathrm{ln}}}}  : principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2
( - 1 ) 1 {\displaystyle{\displaystyle{\displaystyle(-1)}}}  : negative unity to an integer power : http://dlmf.nist.gov/5.7.E7
ψ 𝜓 {\displaystyle{\displaystyle{\displaystyle\psi}}}  : psi (or digamma) function : http://dlmf.nist.gov/5.2#E2
ζ 𝜁 {\displaystyle{\displaystyle{\displaystyle\zeta}}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1

Bibliography

Equation (23), Section 25.11 of DLMF.

URL links

We ask users to provide relevant URL links in this space.