Big q-Laguerre: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

Big q-Laguerre

Basic hypergeometric representation

P n ( x ; a , b ; q ) = \qHyperrphis 32 @ @ q - n , 0 , x a q , b q q q big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 0 𝑥 𝑎 𝑞 𝑏 𝑞 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b;q\right)=% \qHyperrphis{3}{2}@@{q^{-n},0,x}{aq,bq}{q}{q}}}} {\displaystyle \bigqLaguerre{n}@{x}{a}{b}{q}=\qHyperrphis{3}{2}@@{q^{-n},0,x}{aq,bq}{q}{q} }
P n ( x ; a , b ; q ) = 1 ( b - 1 q - n ; q ) n \qHyperrphis 21 @ @ q - n , a q x - 1 a q q x b big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 1 q-Pochhammer-symbol superscript 𝑏 1 superscript 𝑞 𝑛 𝑞 𝑛 \qHyperrphis 21 @ @ superscript 𝑞 𝑛 𝑎 𝑞 superscript 𝑥 1 𝑎 𝑞 𝑞 𝑥 𝑏 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b;q\right)=\frac{1% }{\left(b^{-1}q^{-n};q\right)_{n}}\,\qHyperrphis{2}{1}@@{q^{-n},aqx^{-1}}{aq}{% q}{\frac{x}{b}}}}} {\displaystyle \bigqLaguerre{n}@{x}{a}{b}{q}=\frac{1}{\qPochhammer{b^{-1}q^{-n}}{q}{n}}\,\qHyperrphis{2}{1}@@{q^{-n},aqx^{-1}}{aq}{q}{\frac{x}{b}} }

Orthogonality relation(s)

b q a q ( a - 1 x , b - 1 x ; q ) ( x ; q ) P m ( x ; a , b ; q ) P n ( x ; a , b ; q ) d q x = a q ( 1 - q ) ( q , a - 1 b , a b - 1 q ; q ) ( a q , b q ; q ) ( q ; q ) n ( a q , b q ; q ) n ( - a b q 2 ) n q \binomial n 2 δ m , n superscript subscript 𝑏 𝑞 𝑎 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑏 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑞 big-q-Laguerre-polynomial-P 𝑚 𝑥 𝑎 𝑏 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 subscript 𝑑 𝑞 𝑥 𝑎 𝑞 1 𝑞 q-Pochhammer-symbol 𝑞 superscript 𝑎 1 𝑏 𝑎 superscript 𝑏 1 𝑞 𝑞 q-Pochhammer-symbol 𝑎 𝑞 𝑏 𝑞 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑏 𝑞 𝑞 𝑛 superscript 𝑎 𝑏 superscript 𝑞 2 𝑛 superscript 𝑞 \binomial 𝑛 2 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\int_{bq}^{aq}\frac{\left(a^{-1}x,b^% {-1}x;q\right)_{\infty}}{\left(x;q\right)_{\infty}}P_{m}\!\left(x;a,b;q\right)% P_{n}\!\left(x;a,b;q\right)\,d_{q}x{}=aq(1-q)\frac{\left(q,a^{-1}b,ab^{-1}q;q% \right)_{\infty}}{\left(aq,bq;q\right)_{\infty}}\frac{\left(q;q\right)_{n}}{% \left(aq,bq;q\right)_{n}}(-abq^{2})^{n}q^{\binomial{n}{2}}\,\delta_{m,n}}}} {\displaystyle \int_{bq}^{aq}\frac{\qPochhammer{a^{-1}x,b^{-1}x}{q}{\infty}}{\qPochhammer{x}{q}{\infty}} \bigqLaguerre{m}@{x}{a}{b}{q}\bigqLaguerre{n}@{x}{a}{b}{q}\,d_qx {}=aq(1-q)\frac{\qPochhammer{q,a^{-1}b,ab^{-1}q}{q}{\infty}} {\qPochhammer{aq,bq}{q}{\infty}}\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{aq,bq}{q}{n}}(-abq^2)^nq^{\binomial{n}{2}}\,\Kronecker{m}{n} }

Recurrence relation

( x - 1 ) P n ( x ; a , b ; q ) = A n P n + 1 ( x ; a , b ; q ) - ( A n + C n ) P n ( x ; a , b ; q ) + C n P n - 1 ( x ; a , b ; q ) 𝑥 1 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 subscript 𝐴 𝑛 big-q-Laguerre-polynomial-P 𝑛 1 𝑥 𝑎 𝑏 𝑞 subscript 𝐴 𝑛 subscript 𝐶 𝑛 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 subscript 𝐶 𝑛 big-q-Laguerre-polynomial-P 𝑛 1 𝑥 𝑎 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle(x-1)P_{n}\!\left(x;a,b;q\right)=A_{% n}P_{n+1}\!\left(x;a,b;q\right)-\left(A_{n}+C_{n}\right)P_{n}\!\left(x;a,b;q% \right){}+C_{n}P_{n-1}\!\left(x;a,b;q\right)}}} {\displaystyle (x-1)\bigqLaguerre{n}@{x}{a}{b}{q}=A_n\bigqLaguerre{n+1}@{x}{a}{b}{q}-\left(A_n+C_n\right)\bigqLaguerre{n}@{x}{a}{b}{q} {}+C_n\bigqLaguerre{n-1}@{x}{a}{b}{q} }

Substitution(s): C n = - a b q n + 1 ( 1 - q n ) subscript 𝐶 𝑛 𝑎 𝑏 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle C_{n}=-abq^{n+1}(1-q^{n})}}} &
A n = ( 1 - a q n + 1 ) ( 1 - b q n + 1 ) subscript 𝐴 𝑛 1 𝑎 superscript 𝑞 𝑛 1 1 𝑏 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle A_{n}=(1-aq^{n+1})(1-bq^{n+1})}}}


Monic recurrence relation

x P ^ n ( x ) = P ^ n + 1 ( x ) + [ 1 - ( A n + C n ) ] P ^ n ( x ) - a b q n + 1 ( 1 - q n ) ( 1 - a q n ) ( 1 - b q n ) P ^ n - 1 ( x ) 𝑥 big-q-Laguerre-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑞 big-q-Laguerre-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑞 delimited-[] 1 subscript 𝐴 𝑛 subscript 𝐶 𝑛 big-q-Laguerre-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑞 𝑎 𝑏 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 superscript 𝑞 𝑛 1 𝑏 superscript 𝑞 𝑛 big-q-Laguerre-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{P}}_{n}\!\left(x\right)=% {\widehat{P}}_{n+1}\!\left(x\right)+\left[1-(A_{n}+C_{n})\right]{\widehat{P}}_% {n}\!\left(x\right){}-abq^{n+1}(1-q^{n})(1-aq^{n})(1-bq^{n}){\widehat{P}}_{n-1% }\!\left(x\right)}}} {\displaystyle x\monicbigqLaguerre{n}@@{x}{a}{b}{q}=\monicbigqLaguerre{n+1}@@{x}{a}{b}{q}+\left[1-(A_n+C_n)\right]\monicbigqLaguerre{n}@@{x}{a}{b}{q} {}-abq^{n+1}(1-q^n)(1-aq^n)(1-bq^n)\monicbigqLaguerre{n-1}@@{x}{a}{b}{q} }

Substitution(s): C n = - a b q n + 1 ( 1 - q n ) subscript 𝐶 𝑛 𝑎 𝑏 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle C_{n}=-abq^{n+1}(1-q^{n})}}} &
A n = ( 1 - a q n + 1 ) ( 1 - b q n + 1 ) subscript 𝐴 𝑛 1 𝑎 superscript 𝑞 𝑛 1 1 𝑏 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle A_{n}=(1-aq^{n+1})(1-bq^{n+1})}}}


P n ( x ; a , b ; q ) = 1 ( a q , b q ; q ) n P ^ n ( x ) big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 1 q-Pochhammer-symbol 𝑎 𝑞 𝑏 𝑞 𝑞 𝑛 big-q-Laguerre-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b;q\right)=\frac{1% }{\left(aq,bq;q\right)_{n}}{\widehat{P}}_{n}\!\left(x\right)}}} {\displaystyle \bigqLaguerre{n}@{x}{a}{b}{q}=\frac{1}{\qPochhammer{aq,bq}{q}{n}}\monicbigqLaguerre{n}@@{x}{a}{b}{q} }

q-Difference equation

q - n ( 1 - q n ) x 2 y ( x ) = B ( x ) y ( q x ) - [ B ( x ) + D ( x ) ] y ( x ) + D ( x ) y ( q - 1 x ) superscript 𝑞 𝑛 1 superscript 𝑞 𝑛 superscript 𝑥 2 𝑦 𝑥 𝐵 𝑥 𝑦 𝑞 𝑥 delimited-[] 𝐵 𝑥 𝐷 𝑥 𝑦 𝑥 𝐷 𝑥 𝑦 superscript 𝑞 1 𝑥 {\displaystyle{\displaystyle{\displaystyle q^{-n}(1-q^{n})x^{2}y(x)=B(x)y(qx)-% \left[B(x)+D(x)\right]y(x)+D(x)y(q^{-1}x)}}} {\displaystyle q^{-n}(1-q^n)x^2y(x)=B(x)y(qx)-\left[B(x)+D(x)\right]y(x)+D(x)y(q^{-1}x) }

Substitution(s): D ( x ) = ( x - a q ) ( x - b q ) 𝐷 𝑥 𝑥 𝑎 𝑞 𝑥 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle D(x)=(x-aq)(x-bq)}}} &

B ( x ) = a b q ( 1 - x ) 𝐵 𝑥 𝑎 𝑏 𝑞 1 𝑥 {\displaystyle{\displaystyle{\displaystyle B(x)=abq(1-x)}}} &

y ( x ) = P n ( x ; a , b ; q ) 𝑦 𝑥 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=P_{n}\!\left(x;a,b;q\right)}}}


Forward shift operator

P n ( x ; a , b ; q ) - P n ( q x ; a , b ; q ) = q - n + 1 ( 1 - q n ) ( 1 - a q ) ( 1 - b q ) x P n - 1 ( q x ; a q , b q ; q ) big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑞 𝑥 𝑎 𝑏 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑞 1 𝑏 𝑞 𝑥 big-q-Laguerre-polynomial-P 𝑛 1 𝑞 𝑥 𝑎 𝑞 𝑏 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b;q\right)-P_{n}\!% \left(qx;a,b;q\right)=\frac{q^{-n+1}(1-q^{n})}{(1-aq)(1-bq)}xP_{n-1}\!\left(qx% ;aq,bq;q\right)}}} {\displaystyle \bigqLaguerre{n}@{x}{a}{b}{q}-\bigqLaguerre{n}@{qx}{a}{b}{q}=\frac{q^{-n+1}(1-q^n)} {(1-aq)(1-bq)}x\bigqLaguerre{n-1}@{qx}{aq}{bq}{q} }
𝒟 q P n ( x ; a , b ; q ) = q - n + 1 ( 1 - q n ) ( 1 - q ) ( 1 - a q ) ( 1 - b q ) P n - 1 ( q x ; a q , b q ; q ) q-derivative 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑞 1 𝑎 𝑞 1 𝑏 𝑞 big-q-Laguerre-polynomial-P 𝑛 1 𝑞 𝑥 𝑎 𝑞 𝑏 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}P_{n}\!\left(x;a,b;q% \right)=\frac{q^{-n+1}(1-q^{n})}{(1-q)(1-aq)(1-bq)}P_{n-1}\!\left(qx;aq,bq;q% \right)}}} {\displaystyle \qderiv{q}\bigqLaguerre{n}@{x}{a}{b}{q}=\frac{q^{-n+1}(1-q^n)} {(1-q)(1-aq)(1-bq)}\bigqLaguerre{n-1}@{qx}{aq}{bq}{q} }

Backward shift operator

( x - a ) ( x - b ) P n ( x ; a , b ; q ) - a b ( 1 - x ) P n ( q x ; a , b ; q ) = ( 1 - a ) ( 1 - b ) x P n + 1 ( x ; a q - 1 , b q - 1 ; q ) 𝑥 𝑎 𝑥 𝑏 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 𝑎 𝑏 1 𝑥 big-q-Laguerre-polynomial-P 𝑛 𝑞 𝑥 𝑎 𝑏 𝑞 1 𝑎 1 𝑏 𝑥 big-q-Laguerre-polynomial-P 𝑛 1 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle(x-a)(x-b)P_{n}\!\left(x;a,b;q\right% )-ab(1-x)P_{n}\!\left(qx;a,b;q\right){}=(1-a)(1-b)xP_{n+1}\!\left(x;aq^{-1},bq% ^{-1};q\right)}}} {\displaystyle (x-a)(x-b)\bigqLaguerre{n}@{x}{a}{b}{q}-ab(1-x)\bigqLaguerre{n}@{qx}{a}{b}{q} {}=(1-a)(1-b)x\bigqLaguerre{n+1}@{x}{aq^{-1}}{bq^{-1}}{q} }
𝒟 q [ w ( x ; a , b ; q ) P n ( x ; a , b ; q ) ] = ( 1 - a ) ( 1 - b ) a b ( 1 - q ) w ( x ; a q - 1 , b q - 1 ; q ) P n + 1 ( x ; a q - 1 , b q - 1 ; q ) q-derivative 𝑞 𝑤 𝑥 𝑎 𝑏 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 1 𝑎 1 𝑏 𝑎 𝑏 1 𝑞 𝑤 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑞 big-q-Laguerre-polynomial-P 𝑛 1 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}\left[w(x;a,b;q)P_{n}% \!\left(x;a,b;q\right)\right]{}=\frac{(1-a)(1-b)}{ab(1-q)}w(x;aq^{-1},bq^{-1};% q)P_{n+1}\!\left(x;aq^{-1},bq^{-1};q\right)}}} {\displaystyle \qderiv{q}\left[w(x;a,b;q)\bigqLaguerre{n}@{x}{a}{b}{q}\right] {}=\frac{(1-a)(1-b)}{ab(1-q)}w(x;aq^{-1},bq^{-1};q)\bigqLaguerre{n+1}@{x}{aq^{-1}}{bq^{-1}}{q} }

Substitution(s): w ( x ; a , b ; q ) = ( a - 1 x , b - 1 x ; q ) ( x ; q ) 𝑤 𝑥 𝑎 𝑏 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑏 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b;q)=\frac{\left(a^{-1}x,b^{-% 1}x;q\right)_{\infty}}{\left(x;q\right)_{\infty}}}}}


Rodrigues-type formula

w ( x ; a , b ; q ) P n ( x ; a , b ; q ) = a n b n q n ( n + 1 ) ( 1 - q ) n ( a q , b q ; q ) n ( 𝒟 q ) n [ w ( x ; a q n , b q n ; q ) ] 𝑤 𝑥 𝑎 𝑏 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 superscript 𝑎 𝑛 superscript 𝑏 𝑛 superscript 𝑞 𝑛 𝑛 1 superscript 1 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑏 𝑞 𝑞 𝑛 superscript q-derivative 𝑞 𝑛 delimited-[] 𝑤 𝑥 𝑎 superscript 𝑞 𝑛 𝑏 superscript 𝑞 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b;q)P_{n}\!\left(x;a,b;q% \right){}=\frac{a^{n}b^{n}q^{n(n+1)}(1-q)^{n}}{\left(aq,bq;q\right)_{n}}\left(% \mathcal{D}_{q}\right)^{n}\left[w(x;aq^{n},bq^{n};q)\right]}}} {\displaystyle w(x;a,b;q)\bigqLaguerre{n}@{x}{a}{b}{q} {}=\frac{a^nb^nq^{n(n+1)}(1-q)^n} {\qPochhammer{aq,bq}{q}{n}}\left(\qderiv{q}\right)^n\left[w(x;aq^n,bq^n;q)\right] }

Substitution(s): w ( x ; a , b ; q ) = ( a - 1 x , b - 1 x ; q ) ( x ; q ) 𝑤 𝑥 𝑎 𝑏 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑏 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b;q)=\frac{\left(a^{-1}x,b^{-% 1}x;q\right)_{\infty}}{\left(x;q\right)_{\infty}}}}}


Generating functions

( b q t ; q ) \qHyperrphis 21 @ @ a q x - 1 , 0 a q q x t = n = 0 ( b q ; q ) n ( q ; q ) n P n ( x ; a , b ; q ) t n q-Pochhammer-symbol 𝑏 𝑞 𝑡 𝑞 \qHyperrphis 21 @ @ 𝑎 𝑞 superscript 𝑥 1 0 𝑎 𝑞 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(bqt;q\right)_{\infty}\cdot% \qHyperrphis{2}{1}@@{aqx^{-1},0}{aq}{q}{xt}=\sum_{n=0}^{\infty}\frac{\left(bq;% q\right)_{n}}{\left(q;q\right)_{n}}P_{n}\!\left(x;a,b;q\right)t^{n}}}} {\displaystyle \qPochhammer{bqt}{q}{\infty}\cdot\qHyperrphis{2}{1}@@{aqx^{-1},0}{aq}{q}{xt} =\sum_{n=0}^{\infty}\frac{\qPochhammer{bq}{q}{n}}{\qPochhammer{q}{q}{n}}\bigqLaguerre{n}@{x}{a}{b}{q}t^n }
( a q t ; q ) \qHyperrphis 21 @ @ b q x - 1 , 0 b q q x t = n = 0 ( a q ; q ) n ( q ; q ) n P n ( x ; a , b ; q ) t n q-Pochhammer-symbol 𝑎 𝑞 𝑡 𝑞 \qHyperrphis 21 @ @ 𝑏 𝑞 superscript 𝑥 1 0 𝑏 𝑞 𝑞 𝑥 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝑎 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(aqt;q\right)_{\infty}\cdot% \qHyperrphis{2}{1}@@{bqx^{-1},0}{bq}{q}{xt}=\sum_{n=0}^{\infty}\frac{\left(aq;% q\right)_{n}}{\left(q;q\right)_{n}}P_{n}\!\left(x;a,b;q\right)t^{n}}}} {\displaystyle \qPochhammer{aqt}{q}{\infty}\cdot\qHyperrphis{2}{1}@@{bqx^{-1},0}{bq}{q}{xt} =\sum_{n=0}^{\infty}\frac{\qPochhammer{aq}{q}{n}}{\qPochhammer{q}{q}{n}}\bigqLaguerre{n}@{x}{a}{b}{q}t^n }
( t ; q ) \qHyperrphis 32 @ @ 0 , 0 , x a q , b q q t = n = 0 ( - 1 ) n q \binomial n 2 ( q ; q ) n P n ( x ; a , b ; q ) t n q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 32 @ @ 0 0 𝑥 𝑎 𝑞 𝑏 𝑞 𝑞 𝑡 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 \binomial 𝑛 2 q-Pochhammer-symbol 𝑞 𝑞 𝑛 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(t;q\right)_{\infty}\cdot% \qHyperrphis{3}{2}@@{0,0,x}{aq,bq}{q}{t}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{% \binomial{n}{2}}}{\left(q;q\right)_{n}}P_{n}\!\left(x;a,b;q\right)t^{n}}}} {\displaystyle \qPochhammer{t}{q}{\infty}\cdot\qHyperrphis{3}{2}@@{0,0,x}{aq,bq}{q}{t}=\sum_{n=0}^{\infty} \frac{(-1)^nq^{\binomial{n}{2}}}{\qPochhammer{q}{q}{n}}\bigqLaguerre{n}@{x}{a}{b}{q}t^n }

Limit relations

Big q-Jacobi polynomial to Big q-Laguerre polynomial

P n ( x ; a , 0 , c ; q ) = P n ( x ; a , c ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 0 𝑐 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,0,c;q\right)=P_{n}% \!\left(x;a,c;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{0}{c}{q}=\bigqLaguerre{n}@{x}{a}{c}{q} }

Big q-Laguerre polynomial to Little q-Laguerre / Wall polynomial

lim b - P n ( b q x ; a , b ; q ) = p n ( x ; a ; q ) subscript 𝑏 big-q-Laguerre-polynomial-P 𝑛 𝑏 𝑞 𝑥 𝑎 𝑏 𝑞 little-q-Laguerre-Wall-polynomial-p 𝑛 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{b\rightarrow-\infty}P_{n}\!% \left(bqx;a,b;q\right)=p_{n}\!\left(x;a;q\right)}}} {\displaystyle \lim_{b\rightarrow -\infty}\bigqLaguerre{n}@{bqx}{a}{b}{q}=\littleqLaguerre{n}@{x}{a}{q} }

Big q-Laguerre polynomial to Al-Salam-Carlitz I polynomial

lim a 0 P n ( a q x ; a , a b ; q ) a n = q n U n ( b ) ( x ; q ) subscript 𝑎 0 big-q-Laguerre-polynomial-P 𝑛 𝑎 𝑞 𝑥 𝑎 𝑎 𝑏 𝑞 superscript 𝑎 𝑛 superscript 𝑞 𝑛 q-Al-Salam-Carlitz-I-polynomial-U 𝑏 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow 0}\frac{P_{n}\!% \left(aqx;a,ab;q\right)}{a^{n}}=q^{n}U^{(b)}_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\rightarrow 0}\frac{\bigqLaguerre{n}@{aqx}{a}{ab}{q}}{a^n}=q^n\AlSalamCarlitzI{b}{n}@{x}{q} }

Big q-Laguerre polynomial to Laguerre polynomial

lim q 1 P n ( x ; q α , ( 1 - q ) - 1 q β ; q ) = L n α ( x - 1 ) L n α ( 0 ) fragments subscript 𝑞 1 superscript pseudo-Jacobi-polynomial 𝑛 𝑥 superscript 𝑞 𝛼 fragments ( 1 q 1 superscript 𝑞 𝛽 ; q ) generalized-Laguerre-polynomial-L 𝛼 𝑛 𝑥 1 generalized-Laguerre-polynomial-L 𝛼 𝑛 0 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}P_{n}\!\left(x;% q^{\alpha},(1-q\right)^{-1}q^{\beta};q)=\frac{L^{\alpha}_{n}\left(x-1\right)}{% L^{\alpha}_{n}\left(0\right)}}}} {\displaystyle \lim_{q\rightarrow 1}\pseudoJacobi{n}@{x}{q^{\alpha}}{(1-q}^{-1}q^{\beta};q)= \frac{\Laguerre[\alpha]{n}@{x-1}}{\Laguerre[\alpha]{n}@{0}} }

Remark

K n Aff ( q - x ; p , N ; q ) = P n ( q - x ; p , q - N - 1 ; q ) affine-q-Krawtchouk-polynomial-K 𝑛 superscript 𝑞 𝑥 𝑝 𝑁 𝑞 big-q-Laguerre-polynomial-P 𝑛 superscript 𝑞 𝑥 𝑝 superscript 𝑞 𝑁 1 𝑞 {\displaystyle{\displaystyle{\displaystyle K^{\mathrm{Aff}}_{n}\!\left(q^{-x};% p,N;q\right)=P_{n}\!\left(q^{-x};p,q^{-N-1};q\right)}}} {\displaystyle \AffqKrawtchouk{n}@{q^{-x}}{p}{N}{q}=\bigqLaguerre{n}@{q^{-x}}{p}{q^{-N-1}}{q} }