Q-Charlier: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

q-Charlier

Basic hypergeometric representation

C n ( q - x ; a ; q ) = \qHyperrphis 21 @ @ q - n , q - x 0 q - q n + 1 a q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 \qHyperrphis 21 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑥 0 𝑞 superscript 𝑞 𝑛 1 𝑎 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x};a;q\right)=% \qHyperrphis{2}{1}@@{q^{-n},q^{-x}}{0}{q}{-\frac{q^{n+1}}{a}}}}} {\displaystyle \qCharlier{n}@{q^{-x}}{a}{q}=\qHyperrphis{2}{1}@@{q^{-n},q^{-x}}{0}{q}{-\frac{q^{n+1}}{a}} }
C n ( q - x ; a ; q ) = ( - a - 1 q ; q ) n \qHyperrphis 11 @ @ q - n - a - 1 q q - q n + 1 - x a q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑞 𝑞 𝑛 \qHyperrphis 11 @ @ superscript 𝑞 𝑛 superscript 𝑎 1 𝑞 𝑞 superscript 𝑞 𝑛 1 𝑥 𝑎 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x};a;q\right)=% \left(-a^{-1}q;q\right)_{n}\cdot\qHyperrphis{1}{1}@@{q^{-n}}{-a^{-1}q}{q}{-% \frac{q^{n+1-x}}{a}}}}} {\displaystyle \qCharlier{n}@{q^{-x}}{a}{q}=\qPochhammer{-a^{-1}q}{q}{n}\cdot\qHyperrphis{1}{1}@@{q^{-n}}{-a^{-1}q}{q}{-\frac{q^{n+1-x}}{a}} }

Orthogonality relation(s)

x = 0 a x ( q ; q ) x q \binomial x 2 C m ( q - x ; a ; q ) C n ( q - x ; a ; q ) = q - n ( - a ; q ) ( - a - 1 q , q ; q ) n δ m , n superscript subscript 𝑥 0 superscript 𝑎 𝑥 q-Pochhammer-symbol 𝑞 𝑞 𝑥 superscript 𝑞 \binomial 𝑥 2 q-Charlier-polynomial-C 𝑚 superscript 𝑞 𝑥 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑞 𝑞 𝑞 𝑛 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\sum_{x=0}^{\infty}\frac{a^{x}}{% \left(q;q\right)_{x}}q^{\binomial{x}{2}}C_{m}\!\left(q^{-x};a;q\right)C_{n}\!% \left(q^{-x};a;q\right){}=q^{-n}\left(-a;q\right)_{\infty}\left(-a^{-1}q,q;q% \right)_{n}\,\delta_{m,n}}}} {\displaystyle \sum_{x=0}^{\infty}\frac{a^x}{\qPochhammer{q}{q}{x}}q^{\binomial{x}{2}}\qCharlier{m}@{q^{-x}}{a}{q}\qCharlier{n}@{q^{-x}}{a}{q} {}=q^{-n}\qPochhammer{-a}{q}{\infty}\qPochhammer{-a^{-1}q,q}{q}{n}\,\Kronecker{m}{n} }

Constraint(s): a > 0 𝑎 0 {\displaystyle{\displaystyle{\displaystyle a>0}}}


Recurrence relation

q 2 n + 1 ( 1 - q - x ) C n ( q - x ) = a C n + 1 ( q - x ) - [ a + q ( 1 - q n ) ( a + q n ) ] C n ( q - x ) + q ( 1 - q n ) ( a + q n ) C n - 1 ( q - x ) superscript 𝑞 2 𝑛 1 1 superscript 𝑞 𝑥 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 𝑎 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 𝑞 delimited-[] 𝑎 𝑞 1 superscript 𝑞 𝑛 𝑎 superscript 𝑞 𝑛 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 𝑞 1 superscript 𝑞 𝑛 𝑎 superscript 𝑞 𝑛 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle q^{2n+1}(1-q^{-x})C_{n}\!\left(q^{-% x}\right){}=aC_{n+1}\!\left(q^{-x}\right)-\left[a+q(1-q^{n})(a+q^{n})\right]C_% {n}\!\left(q^{-x}\right){}+q(1-q^{n})(a+q^{n})C_{n-1}\!\left(q^{-x}\right)}}} {\displaystyle q^{2n+1}(1-q^{-x})\qCharlier{n}@@{q^{-x}}{a}{q} {}=a\qCharlier{n+1}@@{q^{-x}}{a}{q}-\left[a+q(1-q^n)(a+q^n)\right]\qCharlier{n}@@{q^{-x}}{a}{q} {}+q(1-q^n)(a+q^n)\qCharlier{n-1}@@{q^{-x}}{a}{q} }
C n ( q - x ) := C n ( q - x ; a ; q ) assign q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x}\right):=C_{n}\!% \left(q^{-x};a;q\right)}}} {\displaystyle \qCharlier{n}@@{q^{-x}}{a}{q}:=\qCharlier{n}@{q^{-x}}{a}{q} }

Monic recurrence relation

x C ^ n ( x ) = C ^ n + 1 ( x ) + [ 1 + q - 2 n - 1 { a + q ( 1 - q n ) ( a + q n ) } ] C ^ n ( x ) + a q - 4 n + 1 ( 1 - q n ) ( a + q n ) C ^ n - 1 ( x ) 𝑥 q-Charlier-polynomial-monic-p 𝑛 𝑥 𝑎 𝑞 q-Charlier-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑞 delimited-[] 1 superscript 𝑞 2 𝑛 1 𝑎 𝑞 1 superscript 𝑞 𝑛 𝑎 superscript 𝑞 𝑛 q-Charlier-polynomial-monic-p 𝑛 𝑥 𝑎 𝑞 𝑎 superscript 𝑞 4 𝑛 1 1 superscript 𝑞 𝑛 𝑎 superscript 𝑞 𝑛 q-Charlier-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{C}}_{n}\!\left(x\right)=% {\widehat{C}}_{n+1}\!\left(x\right)+\left[1+q^{-2n-1}\left\{a+q(1-q^{n})(a+q^{% n})\right\}\right]{\widehat{C}}_{n}\!\left(x\right){}+aq^{-4n+1}(1-q^{n})(a+q^% {n}){\widehat{C}}_{n-1}\!\left(x\right)}}} {\displaystyle x\monicqCharlier{n}@@{x}{a}{q}=\monicqCharlier{n+1}@@{x}{a}{q}+\left[1+q^{-2n-1}\left\{a+q(1-q^n)(a+q^n)\right\}\right]\monicqCharlier{n}@@{x}{a}{q} {}+aq^{-4n+1}(1-q^n)(a+q^n)\monicqCharlier{n-1}@@{x}{a}{q} }
C n ( q - x ; a ; q ) = ( - 1 ) n q n 2 a n C ^ n ( q - x ) q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 1 𝑛 superscript 𝑞 superscript 𝑛 2 superscript 𝑎 𝑛 q-Charlier-polynomial-monic-p 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x};a;q\right)=% \frac{(-1)^{n}q^{n^{2}}}{a^{n}}{\widehat{C}}_{n}\!\left(q^{-x}\right)}}} {\displaystyle \qCharlier{n}@{q^{-x}}{a}{q}=\frac{(-1)^nq^{n^2}}{a^n}\monicqCharlier{n}@@{q^{-x}}{a}{q} }

q-Difference equation

q n y ( x ) = a q x y ( x + 1 ) - q x ( a - 1 ) y ( x ) + ( 1 - q x ) y ( x - 1 ) superscript 𝑞 𝑛 𝑦 𝑥 𝑎 superscript 𝑞 𝑥 𝑦 𝑥 1 superscript 𝑞 𝑥 𝑎 1 𝑦 𝑥 1 superscript 𝑞 𝑥 𝑦 𝑥 1 {\displaystyle{\displaystyle{\displaystyle q^{n}y(x)=aq^{x}y(x+1)-q^{x}(a-1)y(% x)+(1-q^{x})y(x-1)}}} {\displaystyle q^ny(x)=aq^xy(x+1)-q^x(a-1)y(x)+(1-q^x)y(x-1) }

Substitution(s): y ( x ) = C n ( q - x ; a ; q ) 𝑦 𝑥 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=C_{n}\!\left(q^{-x};a;q\right)% }}}


Forward shift operator

C n ( q - x - 1 ; a ; q ) - C n ( q - x ; a ; q ) = - a - 1 q - x ( 1 - q n ) C n - 1 ( q - x ; a q - 1 ; q ) q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 1 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 𝑎 1 superscript 𝑞 𝑥 1 superscript 𝑞 𝑛 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x-1};a;q\right)-C_% {n}\!\left(q^{-x};a;q\right)=-a^{-1}q^{-x}(1-q^{n})C_{n-1}\!\left(q^{-x};aq^{-% 1};q\right)}}} {\displaystyle \qCharlier{n}@{q^{-x-1}}{a}{q}-\qCharlier{n}@{q^{-x}}{a}{q}=-a^{-1}q^{-x}(1-q^n)\qCharlier{n-1}@{q^{-x}}{aq^{-1}}{q} }
Δ C n ( q - x ; a ; q ) Δ q - x = - q ( 1 - q n ) a ( 1 - q ) C n - 1 ( q - x ; a q - 1 ; q ) Δ q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 Δ superscript 𝑞 𝑥 𝑞 1 superscript 𝑞 𝑛 𝑎 1 𝑞 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\Delta C_{n}\!\left(q^{-x};a;q% \right)}{\Delta q^{-x}}=-\frac{q(1-q^{n})}{a(1-q)}C_{n-1}\!\left(q^{-x};aq^{-1% };q\right)}}} {\displaystyle \frac{\Delta \qCharlier{n}@{q^{-x}}{a}{q}}{\Delta q^{-x}}=-\frac{q(1-q^n)}{a(1-q)}\qCharlier{n-1}@{q^{-x}}{aq^{-1}}{q} }

Backward shift operator

C n ( q - x ; a ; q ) - a - 1 q - x ( 1 - q x ) C n ( q - x + 1 ; a ; q ) = C n + 1 ( q - x ; a q ; q ) q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 𝑎 1 superscript 𝑞 𝑥 1 superscript 𝑞 𝑥 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 1 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(q^{-x};a;q\right)-a^{-% 1}q^{-x}(1-q^{x})C_{n}\!\left(q^{-x+1};a;q\right)=C_{n+1}\!\left(q^{-x};aq;q% \right)}}} {\displaystyle \qCharlier{n}@{q^{-x}}{a}{q}-a^{-1}q^{-x}(1-q^x)\qCharlier{n}@{q^{-x+1}}{a}{q}=\qCharlier{n+1}@{q^{-x}}{aq}{q} }
[ w ( x ; a ; q ) C n ( q - x ; a ; q ) ] q - x = 1 1 - q w ( x ; a q ; q ) C n + 1 ( q - x ; a q ; q ) 𝑤 𝑥 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 𝑞 𝑥 1 1 𝑞 𝑤 𝑥 𝑎 𝑞 𝑞 q-Charlier-polynomial-C 𝑛 1 superscript 𝑞 𝑥 𝑎 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{\nabla\left[w(x;a;q)C_{n}\!% \left(q^{-x};a;q\right)\right]}{\nabla q^{-x}}=\frac{1}{1-q}w(x;aq;q)C_{n+1}\!% \left(q^{-x};aq;q\right)}}} {\displaystyle \frac{\nabla\left[w(x;a;q)\qCharlier{n}@{q^{-x}}{a}{q}\right]}{\nabla q^{-x}} =\frac{1}{1-q}w(x;aq;q)\qCharlier{n+1}@{q^{-x}}{aq}{q} }

Substitution(s): w ( x ; a ; q ) = a x q \binomial x + 12 ( q ; q ) x 𝑤 𝑥 𝑎 𝑞 superscript 𝑎 𝑥 superscript 𝑞 \binomial 𝑥 12 q-Pochhammer-symbol 𝑞 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)=\frac{a^{x}q^{\binomial{x+% 1}{2}}}{\left(q;q\right)_{x}}}}}


Rodrigues-type formula

w ( x ; a ; q ) C n ( q - x ; a ; q ) = ( 1 - q ) n ( q ) n [ w ( x ; a q - n ; q ) ] 𝑤 𝑥 𝑎 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 superscript 1 𝑞 𝑛 superscript subscript 𝑞 𝑛 delimited-[] 𝑤 𝑥 𝑎 superscript 𝑞 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)C_{n}\!\left(q^{-x};a;q% \right)=(1-q)^{n}\left(\nabla_{q}\right)^{n}\left[w(x;aq^{-n};q)\right]}}} {\displaystyle w(x;a;q)\qCharlier{n}@{q^{-x}}{a}{q}=(1-q)^n\left(\nabla_q\right)^n\left[w(x;aq^{-n};q)\right] }

Substitution(s): w ( x ; a ; q ) = a x q \binomial x + 12 ( q ; q ) x 𝑤 𝑥 𝑎 𝑞 superscript 𝑎 𝑥 superscript 𝑞 \binomial 𝑥 12 q-Pochhammer-symbol 𝑞 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)=\frac{a^{x}q^{\binomial{x+% 1}{2}}}{\left(q;q\right)_{x}}}}}


q := q - x assign subscript 𝑞 superscript 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle\nabla_{q}:=\frac{\nabla}{\nabla q^{% -x}}}}} {\displaystyle \nabla_q:=\frac{\nabla}{\nabla q^{-x}} }

Generating functions

1 ( t ; q ) \qHyperrphis 11 @ @ q - x 0 q - a - 1 q t = n = 0 C n ( q - x ; a ; q ) ( q ; q ) n t n 1 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 11 @ @ superscript 𝑞 𝑥 0 𝑞 superscript 𝑎 1 𝑞 𝑡 superscript subscript 𝑛 0 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{\left(t;q\right)_{\infty}}% \,\qHyperrphis{1}{1}@@{q^{-x}}{0}{q}{-a^{-1}qt}=\sum_{n=0}^{\infty}\frac{C_{n}% \!\left(q^{-x};a;q\right)}{\left(q;q\right)_{n}}t^{n}}}} {\displaystyle \frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{1}{1}@@{q^{-x}}{0}{q}{-a^{-1}qt} =\sum_{n=0}^{\infty}\frac{\qCharlier{n}@{q^{-x}}{a}{q}}{\qPochhammer{q}{q}{n}}t^n }
1 ( t ; q ) \qHyperrphis 01 @ @ - - a - 1 q q - a - 1 q - x + 1 t = n = 0 C n ( q - x ; a ; q ) ( - a - 1 q , q ; q ) n t n fragments 1 q-Pochhammer-symbol 𝑡 𝑞 \qHyperrphis 01 @ @ superscript 𝑎 1 q q superscript 𝑎 1 superscript 𝑞 𝑥 1 t superscript subscript 𝑛 0 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑞 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{\left(t;q\right)_{\infty}}% \,\qHyperrphis{0}{1}@@{-}{-a^{-1}q}{q}{-a^{-1}q^{-x+1}t}=\sum_{n=0}^{\infty}% \frac{C_{n}\!\left(q^{-x};a;q\right)}{\left(-a^{-1}q,q;q\right)_{n}}t^{n}}}} {\displaystyle \frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{0}{1}@@{-}{-a^{-1}q}{q}{-a^{-1}q^{-x+1}t} =\sum_{n=0}^{\infty}\frac{\qCharlier{n}@{q^{-x}}{a}{q}}{\qPochhammer{-a^{-1}q,q}{q}{n}}t^n }

Limit relations

q-Meixner polynomial to q-Charlier polynomial

M n ( x ; 0 , c ; q ) = C n ( x ; c ; q ) q-Meixner-polynomial-M 𝑛 𝑥 0 𝑐 𝑞 q-Charlier-polynomial-C 𝑛 𝑥 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle M_{n}\!\left(x;0,c;q\right)=C_{n}\!% \left(x;c;q\right)}}} {\displaystyle \qMeixner{n}@{x}{0}{c}{q}=\qCharlier{n}@{x}{c}{q} }

q-Krawtchouk polynomial to q-Charlier polynomial

lim N K n ( q - x ; a - 1 q - N , N ; q ) = C n ( q - x ; a ; q ) subscript 𝑁 q-Krawtchouk-polynomial-K 𝑛 superscript 𝑞 𝑥 superscript 𝑎 1 superscript 𝑞 𝑁 𝑁 𝑞 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{N\rightarrow\infty}K_{n}\!% \left(q^{-x};a^{-1}q^{-N},N;q\right)=C_{n}\!\left(q^{-x};a;q\right)}}} {\displaystyle \lim_{N\rightarrow\infty}\qKrawtchouk{n}@{q^{-x}}{a^{-1}q^{-N}}{N}{q}=\qCharlier{n}@{q^{-x}}{a}{q} }

q-Charlier polynomial to Stieltjes-Wigert polynomial

lim a C n ( a x ; a ; q ) = ( q ; q ) n S n ( x ; q ) subscript 𝑎 q-Charlier-polynomial-C 𝑛 𝑎 𝑥 𝑎 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 Stieltjes-Wigert-polynomial-S 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow\infty}C_{n}\!% \left(ax;a;q\right)=\left(q;q\right)_{n}S_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\rightarrow\infty}\qCharlier{n}@{ax}{a}{q}=\qPochhammer{q}{q}{n}\StieltjesWigert{n}@{x}{q} }

q-Charlier polynomial to Charlier polynomial

lim q 1 C n ( q - x ; a ( 1 - q ) ; q ) = C n ( x ; a ) subscript 𝑞 1 q-Charlier-polynomial-C 𝑛 superscript 𝑞 𝑥 𝑎 1 𝑞 𝑞 Charlier-polynomial-C 𝑛 𝑥 𝑎 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}C_{n}\!\left(q^% {-x};a(1-q);q\right)=C_{n}\!\left(x;a\right)}}} {\displaystyle \lim_{q\rightarrow 1}\qCharlier{n}@{q^{-x}}{a(1-q)}{q}=\Charlier{n}@{x}{a} }

Remark

C n ( - x ; - q - α ; q ) ( q ; q ) n = L n ( α ) ( x ; q ) q-Charlier-polynomial-C 𝑛 𝑥 superscript 𝑞 𝛼 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Laguerre-polynomial-L 𝛼 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{C_{n}\!\left(-x;-q^{-\alpha};q% \right)}{\left(q;q\right)_{n}}=L^{(\alpha)}_{n}\!\left(x;q\right)}}} {\displaystyle \frac{\qCharlier{n}@{-x}{-q^{-\alpha}}{q}}{\qPochhammer{q}{q}{n}}=\qLaguerre[\alpha]{n}@{x}{q} }