Al-Salam-Carlitz II: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

Al-Salam-Carlitz II

Basic hypergeometric representation

V n ( a ) ( x ; q ) = ( - a ) n q - \binomial n 2 \qHyperrphis 20 @ @ q - n , x - q q n a q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 \qHyperrphis 20 @ @ superscript 𝑞 𝑛 𝑥 𝑞 superscript 𝑞 𝑛 𝑎 {\displaystyle{\displaystyle{\displaystyle V^{(a)}_{n}\!\left(x;q\right)=(-a)^% {n}q^{-\binomial{n}{2}}\,\qHyperrphis{2}{0}@@{q^{-n},x}{-}{q}{\frac{q^{n}}{a}}% }}} {\displaystyle \AlSalamCarlitzII{a}{n}@{x}{q}= (-a)^nq^{-\binomial{n}{2}}\,\qHyperrphis{2}{0}@@{q^{-n},x}{-}{q}{\frac{q^n}{a}} }

Orthogonality relation(s)

k = 0 q k 2 a k ( q ; q ) k ( a q ; q ) k V m ( a ) ( q - k ; q ) V n ( a ) ( q - k ; q ) = ( q ; q ) n a n ( a q ; q ) q n 2 δ m , n superscript subscript 𝑘 0 superscript 𝑞 superscript 𝑘 2 superscript 𝑎 𝑘 q-Pochhammer-symbol 𝑞 𝑞 𝑘 q-Pochhammer-symbol 𝑎 𝑞 𝑞 𝑘 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑚 superscript 𝑞 𝑘 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 superscript 𝑞 𝑘 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript 𝑎 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑞 superscript 𝑞 superscript 𝑛 2 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\sum_{k=0}^{\infty}\frac{q^{k^{2}}a^% {k}}{\left(q;q\right)_{k}\left(aq;q\right)_{k}}V^{(a)}_{m}\!\left(q^{-k};q% \right)V^{(a)}_{n}\!\left(q^{-k};q\right){}=\frac{\left(q;q\right)_{n}a^{n}}{% \left(aq;q\right)_{\infty}q^{n^{2}}}\,\delta_{m,n}}}} {\displaystyle \sum_{k=0}^{\infty}\frac{q^{k^2}a^k}{\qPochhammer{q}{q}{k}\qPochhammer{aq}{q}{k}} \AlSalamCarlitzII{a}{m}@{q^{-k}}{q}\AlSalamCarlitzII{a}{n}@{q^{-k}}{q} {}=\frac{\qPochhammer{q}{q}{n}a^n}{\qPochhammer{aq}{q}{\infty}q^{n^2}}\,\Kronecker{m}{n} }

Constraint(s): 0 < a q < 1 0 𝑎 𝑞 1 {\displaystyle{\displaystyle{\displaystyle 0<aq<1}}}


Recurrence relation

x V n ( a ) ( x ; q ) = V n + 1 ( a ) ( x ; q ) + ( a + 1 ) q - n V n ( a ) ( x ; q ) + a q - 2 n + 1 ( 1 - q n ) V n - 1 ( a ) ( x ; q ) 𝑥 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑥 𝑞 𝑎 1 superscript 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 𝑎 superscript 𝑞 2 𝑛 1 1 superscript 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle xV^{(a)}_{n}\!\left(x;q\right)=V^{(% a)}_{n+1}\!\left(x;q\right)+(a+1)q^{-n}V^{(a)}_{n}\!\left(x;q\right){}+aq^{-2n% +1}(1-q^{n})V^{(a)}_{n-1}\!\left(x;q\right)}}} {\displaystyle x\AlSalamCarlitzII{a}{n}@{x}{q}=\AlSalamCarlitzII{a}{n+1}@{x}{q}+(a+1)q^{-n}\AlSalamCarlitzII{a}{n}@{x}{q} {}+aq^{-2n+1}(1-q^n)\AlSalamCarlitzII{a}{n-1}@{x}{q} }

Monic recurrence relation

x V ^ n ( a ) ( x ) = V ^ n + 1 ( a ) ( x ) + ( a + 1 ) q - n V ^ n ( a ) ( x ) + a q - 2 n + 1 ( 1 - q n ) V ^ n - 1 ( a ) ( x ) 𝑥 q-Al-Salam-Carlitz-II-polynomial-monic-p 𝑎 𝑛 𝑥 𝑞 q-Al-Salam-Carlitz-II-polynomial-monic-p 𝑎 𝑛 1 𝑥 𝑞 𝑎 1 superscript 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-monic-p 𝑎 𝑛 𝑥 𝑞 𝑎 superscript 𝑞 2 𝑛 1 1 superscript 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-monic-p 𝑎 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{V}}^{(a)}_{n}\!\left(x% \right)={\widehat{V}}^{(a)}_{n+1}\!\left(x\right)+(a+1)q^{-n}{\widehat{V}}^{(a% )}_{n}\!\left(x\right)+aq^{-2n+1}(1-q^{n}){\widehat{V}}^{(a)}_{n-1}\!\left(x% \right)}}} {\displaystyle x\monicAlSalamCarlitzII{a}{n}@@{x}{q}=\monicAlSalamCarlitzII{a}{n+1}@@{x}{q}+(a+1)q^{-n}\monicAlSalamCarlitzII{a}{n}@@{x}{q}+aq^{-2n+1}(1-q^n)\monicAlSalamCarlitzII{a}{n-1}@@{x}{q} }
V n ( a ) ( x ; q ) = V ^ n ( a ) ( x ) q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 q-Al-Salam-Carlitz-II-polynomial-monic-p 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle V^{(a)}_{n}\!\left(x;q\right)={% \widehat{V}}^{(a)}_{n}\!\left(x\right)}}} {\displaystyle \AlSalamCarlitzII{a}{n}@{x}{q}=\monicAlSalamCarlitzII{a}{n}@@{x}{q} }

q-Difference equation

- ( 1 - q n ) x 2 y ( x ) = ( 1 - x ) ( a - x ) y ( q x ) - [ ( 1 - x ) ( a - x ) + a q ] y ( x ) + a q y ( q - 1 x ) 1 superscript 𝑞 𝑛 superscript 𝑥 2 𝑦 𝑥 1 𝑥 𝑎 𝑥 𝑦 𝑞 𝑥 delimited-[] 1 𝑥 𝑎 𝑥 𝑎 𝑞 𝑦 𝑥 𝑎 𝑞 𝑦 superscript 𝑞 1 𝑥 {\displaystyle{\displaystyle{\displaystyle-(1-q^{n})x^{2}y(x){}=(1-x)(a-x)y(qx% )-\left[(1-x)(a-x)+aq\right]y(x)+aqy(q^{-1}x)}}} {\displaystyle -(1-q^n)x^2y(x) {}=(1-x)(a-x)y(qx)-\left[(1-x)(a-x)+aq\right]y(x)+aqy(q^{-1}x) }

Substitution(s): y ( x ) = V n ( a ) ( x ; q ) 𝑦 𝑥 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=V^{(a)}_{n}\!\left(x;q\right)}}}


Forward shift operator

V n ( a ) ( x ; q ) - V n ( a ) ( q x ; q ) = q - n + 1 ( 1 - q n ) x V n - 1 ( a ) ( q x ; q ) q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑞 𝑥 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 𝑥 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑞 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle V^{(a)}_{n}\!\left(x;q\right)-V^{(a% )}_{n}\!\left(qx;q\right)=q^{-n+1}(1-q^{n})xV^{(a)}_{n-1}\!\left(qx;q\right)}}} {\displaystyle \AlSalamCarlitzII{a}{n}@{x}{q}-\AlSalamCarlitzII{a}{n}@{qx}{q}=q^{-n+1}(1-q^n)x\AlSalamCarlitzII{a}{n-1}@{qx}{q} }
𝒟 q V n ( a ) ( x ; q ) = q - n + 1 ( 1 - q n ) 1 - q V n - 1 ( a ) ( q x ; q ) q-derivative 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑞 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}V^{(a)}_{n}\!\left(x;% q\right)=\frac{q^{-n+1}(1-q^{n})}{1-q}V^{(a)}_{n-1}\!\left(qx;q\right)}}} {\displaystyle \qderiv{q}\AlSalamCarlitzII{a}{n}@{x}{q}=\frac{q^{-n+1}(1-q^n)}{1-q} \AlSalamCarlitzII{a}{n-1}@{qx}{q} }

Backward shift operator

a V n ( a ) ( x ; q ) - ( 1 - x ) ( a - x ) V n ( a ) ( q x ; q ) = - q n x V n + 1 ( a ) ( x ; q ) 𝑎 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 1 𝑥 𝑎 𝑥 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑞 𝑥 𝑞 superscript 𝑞 𝑛 𝑥 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle aV^{(a)}_{n}\!\left(x;q\right)-(1-x% )(a-x)V^{(a)}_{n}\!\left(qx;q\right)=-q^{n}xV^{(a)}_{n+1}\!\left(x;q\right)}}} {\displaystyle a\AlSalamCarlitzII{a}{n}@{x}{q}-(1-x)(a-x)\AlSalamCarlitzII{a}{n}@{qx}{q}=-q^nx\AlSalamCarlitzII{a}{n+1}@{x}{q} }
𝒟 q [ w ( x ; a ; q ) V n ( a ) ( x ; q ) ] = - q n a ( 1 - q ) w ( x ; a ; q ) V n + 1 ( a ) ( x ; q ) q-derivative 𝑞 𝑤 𝑥 𝑎 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑞 𝑛 𝑎 1 𝑞 𝑤 𝑥 𝑎 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}\left[w(x;a;q)V^{(a)}% _{n}\!\left(x;q\right)\right]=-\frac{q^{n}}{a(1-q)}w(x;a;q)V^{(a)}_{n+1}\!% \left(x;q\right)}}} {\displaystyle \qderiv{q}\left[w(x;a;q)\AlSalamCarlitzII{a}{n}@{x}{q}\right] =-\frac{q^n}{a(1-q)}w(x;a;q)\AlSalamCarlitzII{a}{n+1}@{x}{q} }

Substitution(s): w ( x ; a ; q ) = 1 ( x , a - 1 x ; q ) 𝑤 𝑥 𝑎 𝑞 1 q-Pochhammer-symbol 𝑥 superscript 𝑎 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)=\frac{1}{\left(x,a^{-1}x;q% \right)_{\infty}}}}}


Rodrigues-type formula

w ( x ; a ; q ) V n ( a ) ( x ; q ) = a n ( q - 1 ) n q - \binomial n 2 ( 𝒟 q ) n [ w ( x ; a ; q ) ] 𝑤 𝑥 𝑎 𝑞 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑎 𝑛 superscript 𝑞 1 𝑛 superscript 𝑞 \binomial 𝑛 2 superscript q-derivative 𝑞 𝑛 delimited-[] 𝑤 𝑥 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)V^{(a)}_{n}\!\left(x;q% \right)=a^{n}(q-1)^{n}q^{-\binomial{n}{2}}\left(\mathcal{D}_{q}\right)^{n}% \left[w(x;a;q)\right]}}} {\displaystyle w(x;a;q)\AlSalamCarlitzII{a}{n}@{x}{q}=a^n(q-1)^nq^{-\binomial{n}{2}} \left(\qderiv{q}\right)^n\left[w(x;a;q)\right] }

Substitution(s): w ( x ; a ; q ) = 1 ( x , a - 1 x ; q ) 𝑤 𝑥 𝑎 𝑞 1 q-Pochhammer-symbol 𝑥 superscript 𝑎 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a;q)=\frac{1}{\left(x,a^{-1}x;q% \right)_{\infty}}}}}


Generating functions

( x t ; q ) ( t , a t ; q ) = n = 0 ( - 1 ) n q \binomial n 2 ( q ; q ) n V n ( a ) ( x ; q ) t n q-Pochhammer-symbol 𝑥 𝑡 𝑞 q-Pochhammer-symbol 𝑡 𝑎 𝑡 𝑞 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 \binomial 𝑛 2 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{\left(xt;q\right)_{\infty}}{% \left(t,at;q\right)_{\infty}}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{\binomial{n}% {2}}}{\left(q;q\right)_{n}}V^{(a)}_{n}\!\left(x;q\right)t^{n}}}} {\displaystyle \frac{\qPochhammer{xt}{q}{\infty}}{\qPochhammer{t,at}{q}{\infty}}=\sum_{n=0}^{\infty} \frac{(-1)^nq^{\binomial{n}{2}}}{\qPochhammer{q}{q}{n}}\AlSalamCarlitzII{a}{n}@{x}{q}t^n }
( a t ; q ) \qHyperrphis 11 @ @ x a t q t = n = 0 q n ( n - 1 ) ( q ; q ) n V n ( a ) ( x ; q ) t n q-Pochhammer-symbol 𝑎 𝑡 𝑞 \qHyperrphis 11 @ @ 𝑥 𝑎 𝑡 𝑞 𝑡 superscript subscript 𝑛 0 superscript 𝑞 𝑛 𝑛 1 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\left(at;q\right)_{\infty}\cdot% \qHyperrphis{1}{1}@@{x}{at}{q}{t}=\sum_{n=0}^{\infty}\frac{q^{n(n-1)}}{\left(q% ;q\right)_{n}}V^{(a)}_{n}\!\left(x;q\right)t^{n}}}} {\displaystyle \qPochhammer{at}{q}{\infty}\cdot\qHyperrphis{1}{1}@@{x}{at}{q}{t}=\sum_{n=0}^{\infty} \frac{q^{n(n-1)}}{\qPochhammer{q}{q}{n}}\AlSalamCarlitzII{a}{n}@{x}{q}t^n }

Limit relations

q-Meixner polynomial to Al-Salam-Carlitz II polynomial

lim c 0 M n ( x ; - a c - 1 , c ; q ) = ( - 1 a ) n q \binomial n 2 V n ( a ) ( x ; q ) subscript 𝑐 0 q-Meixner-polynomial-M 𝑛 𝑥 𝑎 superscript 𝑐 1 𝑐 𝑞 superscript 1 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow 0}M_{n}\!\left(x;% -ac^{-1},c;q\right)=\left(-\frac{1}{a}\right)^{n}q^{\binomial{n}{2}}V^{(a)}_{n% }\!\left(x;q\right)}}} {\displaystyle \lim_{c\rightarrow 0}\qMeixner{n}@{x}{-ac^{-1}}{c}{q}= \left(-\frac{1}{a}\right)^nq^{\binomial{n}{2}}\AlSalamCarlitzII{a}{n}@{x}{q} }

Quantum q-Krawtchouk polynomial to Al-Salam-Carlitz II polynomial

lim N K n qtm ( x ; a - 1 q - N - 1 , N ; q ) = ( - 1 a ) n q \binomial n 2 V n ( a ) ( x ; q ) subscript 𝑁 quantum-q-Krawtchouk-polynomial-K 𝑛 𝑥 superscript 𝑎 1 superscript 𝑞 𝑁 1 𝑁 𝑞 superscript 1 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{N\rightarrow\infty}K^{\mathrm{% qtm}}_{n}\!\left(x;a^{-1}q^{-N-1},N;q\right)=\left(-\frac{1}{a}\right)^{n}q^{% \binomial{n}{2}}V^{(a)}_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{N\rightarrow\infty}\qtmqKrawtchouk{n}@{x}{a^{-1}q^{-N-1}}{N}{q}= \left(-\frac{1}{a}\right)^nq^{\binomial{n}{2}}\AlSalamCarlitzII{a}{n}@{x}{q} }

Al-Salam-Carlitz II polynomial to Discrete q-Hermite II polynomial

i - n V n ( - 1 ) ( i x ; q ) = h ~ n ( x ; q ) imaginary-unit 𝑛 q-Al-Salam-Carlitz-II-polynomial-V 1 𝑛 imaginary-unit 𝑥 𝑞 discrete-q-Hermite-polynomial-II-h-tilde 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle{\mathrm{i}^{-n}}V^{(-1)}_{n}\!\left% (\mathrm{i}x;q\right)=\tilde{h}_{n}\!\left(x;q\right)}}} {\displaystyle \iunit^{-n}\AlSalamCarlitzII{-1}{n}@{\iunit x}{q}=\discrqHermiteII{n}@{x}{q} }

Al-Salam-Carlitz II polynomial to Charlier / Hermite polynomial

lim q 1 V n ( a ( 1 - q ) ) ( q - x ; q ) ( q - 1 ) n = a n C n ( x ; a ) subscript 𝑞 1 q-Al-Salam-Carlitz-II-polynomial-V 𝑎 1 𝑞 𝑛 superscript 𝑞 𝑥 𝑞 superscript 𝑞 1 𝑛 superscript 𝑎 𝑛 Charlier-polynomial-C 𝑛 𝑥 𝑎 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}\frac{V^{(a(1-q% ))}_{n}\!\left(q^{-x};q\right)}{(q-1)^{n}}=a^{n}C_{n}\!\left(x;a\right)}}} {\displaystyle \lim_{q\rightarrow 1}\frac{\AlSalamCarlitzII{a(1-q)}{n}@{q^{-x}}{q}}{(q-1)^n}= a^n\Charlier{n}@{x}{a} }
lim q 1 V n ( i a 1 - q 2 - 1 ) ( i x 1 - q 2 ; q ) i n ( 1 - q 2 ) n 2 = H n ( x - a ) 2 n subscript 𝑞 1 q-Al-Salam-Carlitz-II-polynomial-V imaginary-unit 𝑎 1 superscript 𝑞 2 1 𝑛 imaginary-unit 𝑥 1 superscript 𝑞 2 𝑞 imaginary-unit 𝑛 superscript 1 superscript 𝑞 2 𝑛 2 Hermite-polynomial-H 𝑛 𝑥 𝑎 superscript 2 𝑛 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}\frac{V^{(% \mathrm{i}a\sqrt{1-q^{2}}-1)}_{n}\!\left(\mathrm{i}x\sqrt{1-q^{2}};q\right)}{{% \mathrm{i}^{n}}(1-q^{2})^{\frac{n}{2}}}=\frac{H_{n}\left(x-a\right)}{2^{n}}}}} {\displaystyle \lim_{q\rightarrow 1}\frac{\AlSalamCarlitzII{\iunit a\sqrt{1-q^2}-1}{n}@{\iunit x\sqrt{1-q^2}}{q}} {\iunit^n(1-q^2)^{\frac{n}{2}}}=\frac{\Hermite{n}@{x-a}}{2^n} }

Remark

V n ( a ) ( x ; q - 1 ) = U n ( a ) ( x ; q ) q-Al-Salam-Carlitz-II-polynomial-V 𝑎 𝑛 𝑥 superscript 𝑞 1 q-Al-Salam-Carlitz-I-polynomial-U 𝑎 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle V^{(a)}_{n}\!\left(x;q^{-1}\right)=% U^{(a)}_{n}\!\left(x;q\right)}}} {\displaystyle \AlSalamCarlitzII{a}{n}@{x}{q^{-1}}=\AlSalamCarlitzI{a}{n}@{x}{q} }