Charlier

From DRMF
Revision as of 00:34, 6 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search

Charlier

Hypergeometric representation

C n ⁑ ( x ; a ) = \HyperpFq 20 @ @ - n , - x - - 1 a fragments Charlier-polynomial-C 𝑛 π‘₯ π‘Ž \HyperpFq 20 @ @ n , x 1 π‘Ž {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(x;a\right)=\HyperpFq{2% }{0}@@{-n,-x}{-}{-\frac{1}{a}}}}} {\displaystyle \Charlier{n}@{x}{a}=\HyperpFq{2}{0}@@{-n,-x}{-}{-\frac{1}{a}} }

Orthogonality relation(s)

βˆ‘ x = 0 ∞ a x x ! ⁒ C m ⁑ ( x ; a ) ⁒ C n ⁑ ( x ; a ) = a - n ⁒ e a ⁒ n ! ⁒ Ξ΄ m , n superscript subscript π‘₯ 0 superscript π‘Ž π‘₯ π‘₯ Charlier-polynomial-C π‘š π‘₯ π‘Ž Charlier-polynomial-C 𝑛 π‘₯ π‘Ž superscript π‘Ž 𝑛 π‘Ž 𝑛 Kronecker-delta π‘š 𝑛 {\displaystyle{\displaystyle{\displaystyle\sum_{x=0}^{\infty}\frac{a^{x}}{x!}C% _{m}\!\left(x;a\right)C_{n}\!\left(x;a\right)=a^{-n}{\mathrm{e}^{a}}n!\,\delta% _{m,n}}}} {\displaystyle \sum_{x=0}^{\infty}\frac{a^x}{x!}\Charlier{m}@{x}{a}\Charlier{n}@{x}{a}= a^{-n}\expe^an!\,\Kronecker{m}{n} }

Constraint(s): a > 0 π‘Ž 0 {\displaystyle{\displaystyle{\displaystyle a>0}}}


Recurrence relation

- x ⁒ C n ⁑ ( x ; a ) = a ⁒ C n + 1 ⁑ ( x ; a ) - ( n + a ) ⁒ C n ⁑ ( x ; a ) + n ⁒ C n - 1 ⁑ ( x ; a ) π‘₯ Charlier-polynomial-C 𝑛 π‘₯ π‘Ž π‘Ž Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž 𝑛 π‘Ž Charlier-polynomial-C 𝑛 π‘₯ π‘Ž 𝑛 Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle-xC_{n}\!\left(x;a\right)=aC_{n+1}\!% \left(x;a\right)-(n+a)C_{n}\!\left(x;a\right)+nC_{n-1}\!\left(x;a\right)}}} {\displaystyle -x\Charlier{n}@{x}{a}=a\Charlier{n+1}@{x}{a}-(n+a)\Charlier{n}@{x}{a}+n\Charlier{n-1}@{x}{a} }

Monic recurrence relation

x ⁒ C ^ n ⁑ ( x ) = C ^ n + 1 ⁑ ( x ) + ( n + a ) ⁒ C ^ n ⁑ ( x ) + n ⁒ a ⁒ C ^ n - 1 ⁑ ( x ) π‘₯ Charlier-polynomial-monic-p 𝑛 π‘₯ π‘Ž Charlier-polynomial-monic-p 𝑛 1 π‘₯ π‘Ž 𝑛 π‘Ž Charlier-polynomial-monic-p 𝑛 π‘₯ π‘Ž 𝑛 π‘Ž Charlier-polynomial-monic-p 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle x{\widehat{C}}_{n}\!\left(x\right)=% {\widehat{C}}_{n+1}\!\left(x\right)+(n+a){\widehat{C}}_{n}\!\left(x\right)+na{% \widehat{C}}_{n-1}\!\left(x\right)}}} {\displaystyle x\monicCharlier{n}@@{x}{a}=\monicCharlier{n+1}@@{x}{a}+(n+a)\monicCharlier{n}@@{x}{a}+na\monicCharlier{n-1}@@{x}{a} }
C n ⁑ ( x ; a ) = ( - 1 a ) n ⁒ C ^ n ⁑ ( x ) Charlier-polynomial-C 𝑛 π‘₯ π‘Ž superscript 1 π‘Ž 𝑛 Charlier-polynomial-monic-p 𝑛 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(x;a\right)=\left(-% \frac{1}{a}\right)^{n}{\widehat{C}}_{n}\!\left(x\right)}}} {\displaystyle \Charlier{n}@{x}{a}=\left(-\frac{1}{a}\right)^n\monicCharlier{n}@@{x}{a} }

Difference equation

- n ⁒ y ⁒ ( x ) = a ⁒ y ⁒ ( x + 1 ) - ( x + a ) ⁒ y ⁒ ( x ) + x ⁒ y ⁒ ( x - 1 ) 𝑛 𝑦 π‘₯ π‘Ž 𝑦 π‘₯ 1 π‘₯ π‘Ž 𝑦 π‘₯ π‘₯ 𝑦 π‘₯ 1 {\displaystyle{\displaystyle{\displaystyle-ny(x)=ay(x+1)-(x+a)y(x)+xy(x-1)}}} {\displaystyle -ny(x)=ay(x+1)-(x+a)y(x)+xy(x-1) }

Substitution(s): y ⁒ ( x ) = C n ⁑ ( x ; a ) 𝑦 π‘₯ Charlier-polynomial-C 𝑛 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle y(x)=C_{n}\!\left(x;a\right)}}}


Forward shift operator

C n ⁑ ( x + 1 ; a ) - C n ⁑ ( x ; a ) = - n a ⁒ C n - 1 ⁑ ( x ; a ) Charlier-polynomial-C 𝑛 π‘₯ 1 π‘Ž Charlier-polynomial-C 𝑛 π‘₯ π‘Ž 𝑛 π‘Ž Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(x+1;a\right)-C_{n}\!% \left(x;a\right)=-\frac{n}{a}C_{n-1}\!\left(x;a\right)}}} {\displaystyle \Charlier{n}@{x+1}{a}-\Charlier{n}@{x}{a}=-\frac{n}{a}\Charlier{n-1}@{x}{a} }
Ξ” ⁒ C n ⁑ ( x ; a ) = - n a ⁒ C n - 1 ⁑ ( x ; a ) Ξ” Charlier-polynomial-C 𝑛 π‘₯ π‘Ž 𝑛 π‘Ž Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle\Delta C_{n}\!\left(x;a\right)=-% \frac{n}{a}C_{n-1}\!\left(x;a\right)}}} {\displaystyle \Delta \Charlier{n}@{x}{a}=-\frac{n}{a}\Charlier{n-1}@{x}{a} }

Backward shift operator

C n ⁑ ( x ; a ) - x a ⁒ C n ⁑ ( x - 1 ; a ) = C n + 1 ⁑ ( x ; a ) Charlier-polynomial-C 𝑛 π‘₯ π‘Ž π‘₯ π‘Ž Charlier-polynomial-C 𝑛 π‘₯ 1 π‘Ž Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle C_{n}\!\left(x;a\right)-\frac{x}{a}% C_{n}\!\left(x-1;a\right)=C_{n+1}\!\left(x;a\right)}}} {\displaystyle \Charlier{n}@{x}{a}-\frac{x}{a}\Charlier{n}@{x-1}{a}=\Charlier{n+1}@{x}{a} }
βˆ‡ ⁑ [ a x x ! ⁒ C n ⁑ ( x ; a ) ] = a x x ! ⁒ C n + 1 ⁑ ( x ; a ) βˆ‡ superscript π‘Ž π‘₯ π‘₯ Charlier-polynomial-C 𝑛 π‘₯ π‘Ž superscript π‘Ž π‘₯ π‘₯ Charlier-polynomial-C 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle\nabla\left[\frac{a^{x}}{x!}C_{n}\!% \left(x;a\right)\right]=\frac{a^{x}}{x!}C_{n+1}\!\left(x;a\right)}}} {\displaystyle \nabla\left[\frac{a^x}{x!}\Charlier{n}@{x}{a}\right]=\frac{a^x}{x!}\Charlier{n+1}@{x}{a} }

Rodrigues-type formula

a x x ! ⁒ C n ⁑ ( x ; a ) = βˆ‡ n ⁑ [ a x x ! ] superscript π‘Ž π‘₯ π‘₯ Charlier-polynomial-C 𝑛 π‘₯ π‘Ž superscript βˆ‡ 𝑛 superscript π‘Ž π‘₯ π‘₯ {\displaystyle{\displaystyle{\displaystyle\frac{a^{x}}{x!}C_{n}\!\left(x;a% \right)=\nabla^{n}\left[\frac{a^{x}}{x!}\right]}}} {\displaystyle \frac{a^x}{x!}\Charlier{n}@{x}{a}=\nabla^n\left[\frac{a^x}{x!}\right] }

Generating function

e t ⁒ ( 1 - t a ) x = βˆ‘ n = 0 ∞ C n ⁑ ( x ; a ) n ! ⁒ t n 𝑑 superscript 1 𝑑 π‘Ž π‘₯ superscript subscript 𝑛 0 Charlier-polynomial-C 𝑛 π‘₯ π‘Ž 𝑛 superscript 𝑑 𝑛 {\displaystyle{\displaystyle{\displaystyle{\mathrm{e}^{t}}\left(1-\frac{t}{a}% \right)^{x}=\sum_{n=0}^{\infty}\frac{C_{n}\!\left(x;a\right)}{n!}t^{n}}}} {\displaystyle \expe^t\left(1-\frac{t}{a}\right)^x=\sum_{n=0}^{\infty}\frac{\Charlier{n}@{x}{a}}{n!}t^n }

Limit relations

Meixner polynomial to Charlier polynomial

lim Ξ² β†’ ∞ ⁑ M n ⁑ ( x ; Ξ² , ( a + Ξ² ) - 1 ⁒ a ) = C n ⁑ ( x ; a ) subscript β†’ 𝛽 Meixner-polynomial-M 𝑛 π‘₯ 𝛽 superscript π‘Ž 𝛽 1 π‘Ž Charlier-polynomial-C 𝑛 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle\lim_{\beta\rightarrow\infty}M_{n}\!% \left(x;\beta,(a+\beta)^{-1}a\right)=C_{n}\!\left(x;a\right)}}} {\displaystyle \lim_{\beta\rightarrow\infty}\Meixner{n}@{x}{\beta}{(a+\beta)^{-1}a}=\Charlier{n}@{x}{a} }

Krawtchouk polynomial to Charlier polynomial

lim N β†’ ∞ ⁑ K n ⁑ ( x ; N - 1 ⁒ a , N ) = C n ⁑ ( x ; a ) subscript β†’ 𝑁 Krawtchouk-polynomial-K 𝑛 π‘₯ superscript 𝑁 1 π‘Ž 𝑁 Charlier-polynomial-C 𝑛 π‘₯ π‘Ž {\displaystyle{\displaystyle{\displaystyle\lim_{N\rightarrow\infty}K_{n}\!% \left(x;N^{-1}a,N\right)=C_{n}\!\left(x;a\right)}}} {\displaystyle \lim_{N\rightarrow\infty}\Krawtchouk{n}@{x}{N^{-1}a}{N}=\Charlier{n}@{x}{a} }

Charlier polynomial to Hermite polynomial

lim a β†’ ∞ ⁑ ( 2 ⁒ a ) 1 2 ⁒ n ⁒ C n ⁑ ( ( 2 ⁒ a ) 1 2 ⁒ x + a ; a ) = ( - 1 ) n ⁒ H n ⁑ ( x ) subscript β†’ π‘Ž superscript 2 π‘Ž 1 2 𝑛 Charlier-polynomial-C 𝑛 superscript 2 π‘Ž 1 2 π‘₯ π‘Ž π‘Ž superscript 1 𝑛 Hermite-polynomial-H 𝑛 π‘₯ {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow\infty}(2a)^{\frac% {1}{2}n}C_{n}\!\left((2a)^{\frac{1}{2}}x+a;a\right)=(-1)^{n}H_{n}\left(x\right% )}}} {\displaystyle \lim_{a\rightarrow\infty} (2a)^{\frac{1}{2}n}\Charlier{n}@{(2a)^{\frac{1}{2}}x+a}{a}=(-1)^n\Hermite{n}@{x} }

Remark

( - a ) n n ! ⁒ C n ⁑ ( x ; a ) = L n x - n ⁑ ( a ) superscript π‘Ž 𝑛 𝑛 Charlier-polynomial-C 𝑛 π‘₯ π‘Ž generalized-Laguerre-polynomial-L π‘₯ 𝑛 𝑛 π‘Ž {\displaystyle{\displaystyle{\displaystyle\frac{(-a)^{n}}{n!}C_{n}\!\left(x;a% \right)=L^{x-n}_{n}\left(a\right)}}} {\displaystyle \frac{(-a)^n}{n!}\Charlier{n}@{x}{a}=\Laguerre[x-n]{n}@{a} }