MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "gapcontinue": "Results_of_Airy_and_Related_Functions",
        "continue": "gapcontinue||"
    },
    "warnings": {
        "main": {
            "*": "Subscribe to the mediawiki-api-announce mailing list at <https://lists.wikimedia.org/postorius/lists/mediawiki-api-announce.lists.wikimedia.org/> for notice of API deprecations and breaking changes."
        },
        "revisions": {
            "*": "Because \"rvslots\" was not specified, a legacy format has been used for the output. This format is deprecated, and in the future the new format will always be used."
        }
    },
    "query": {
        "pages": {
            "1665": {
                "pageid": 1665,
                "ns": 0,
                "title": "Reflection Formulas",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "{{DISPLAYTITLE:Reflection Formulas}}\n<div id=\"drmf_head\">\n<div id=\"alignleft\"> << [[Definition and Expansions|Definition and Expansions]] </div>\n<div id=\"aligncenter\"> [[Zeta_and_Related_Functions#Reflection Formulas|Reflection Formulas]] </div>\n<div id=\"alignright\"> [[Integral Representations|Integral Representations]] >> </div>\n</div>\n\n== Reflection Formulas ==\n\n<math>\\Riemannzeta@{1-s} = 2 (2\\cpi)^{-s} \\cos@{\\tfrac{1}{2} \\cpi s} \\EulerGamma@{s} \\Riemannzeta@{s}</math>\n<div align=\"right\">Constraint(s): <math>{\\displaystyle s \\neq 0,1}</math></div><br />\n<math id=\"DLMF:25.4:E2\">{\\displaystyle\n  \\RiemannZeta@{s}\n  = 2 (2\\cpi)^{s-1} \\sin@{\\tfrac{1}{2} \\cpi s}\n    \\EulerGamma@{1-s} \\RiemannZeta@{1-s}\n}</math><br />\n<math id=\"DLMF:25.4:E3\">{\\displaystyle \n  \\RiemannXi@{s} = \\RiemannXi@{1-s}\n}</math><br />\n<math id=\"DLMF:25.4:E4\">{\\displaystyle \n  \\RiemannXi@{s}\n  = \\tfrac{1}{2} s (s-1) \\EulerGamma@{\\tfrac{1}{2} s} \\cpi^{-s/2}\n    \\RiemannZeta@{s}\n}</math><br />\n<math id=\"DLMF:25.4:E5\">{\\displaystyle \n  \\opminus^k \\RiemannZeta^{(k)}@{1-s}\n  = \\frac{2}{(2\\cpi)^s}\n    \\sum_{m=0}^k \\sum_{r=0}^m\n        \\binom{k}{m} \\binom{m}{r}\n        \\left( \\realpart{(c^{k-m})} \\cos@{\\tfrac{1}{2} \\cpi s}\n             + \\imagpart{(c^{k-m})} \\sin@{\\tfrac{1}{2} \\cpi s} \\right)\n        \\EulerGamma^{(r)}@{s} \\RiemannZeta^{(m-r)}@{s}\n}</math>\n<div align=\"right\">Substitution(s): <math>{\\displaystyle {\\displaystyle c = -\\ln@{2\\cpi} - \\tfrac{1}{2} \\cpi \\iunit }}</math></div><br />\n<div align=\"right\">Constraint(s): <math>{\\displaystyle s \\neq 0,1}</math> &<br /> <math>{\\displaystyle k = 1,2,3,\\dots}</math></div><br />\n<div id=\"drmf_foot\">\n<div id=\"alignleft\"> << [[Definition and Expansions|Definition and Expansions]] </div>\n<div id=\"aligncenter\"> [[Zeta_and_Related_Functions#Reflection Formulas|Reflection Formulas]] </div>\n<div id=\"alignright\"> [[Integral Representations|Integral Representations]] >> </div>\n</div>"
                    }
                ]
            },
            "16446": {
                "pageid": 16446,
                "ns": 0,
                "title": "Results of 3j,6j,9j Symbols",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "{| class=\"wikitable sortable\"\n|-\n! DLMF !! Formula !! Maple !! Mathematica !! Symbolic<br>Maple !! Symbolic<br>Mathematica !! Numeric<br>Maple !! Numeric<br>Mathematica\n|-\n| [https://dlmf.nist.gov/34.8.E2 34.8.E2] || [[Item:Q9773|<math>\\cos@@{\\theta} = \\frac{j_{1}(j_{1}+1)+j_{2}(j_{2}+1)-j_{3}(j_{3}+1)}{2\\sqrt{j_{1}(j_{1}+1)j_{2}(j_{2}+1)}}</math>]] || <code>cos(theta)=(j[1]*(j[1]+ 1)+ j[2]*(j[2]+ 1)- j[3]*(j[3]+ 1))/(2*sqrt(j[1]*(j[1]+ 1)* j[2]*(j[2]+ 1)))</code> || <code>Cos[\\[Theta]]=Divide[Subscript[j, 1]*(Subscript[j, 1]+ 1)+ Subscript[j, 2]*(Subscript[j, 2]+ 1)- Subscript[j, 3]*(Subscript[j, 3]+ 1),2*Sqrt[Subscript[j, 1]*(Subscript[j, 1]+ 1)* Subscript[j, 2]*(Subscript[j, 2]+ 1)]]</code> || Failure || Failure || <div class=\"toccolours mw-collapsible mw-collapsed\">Fail<div class=\"mw-collapsible-content\"><code>-.1603260076-1.911393109*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = 2^(1/2)+I*2^(1/2)}</code><br><code>-1.096456218-2.155913947*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = 2^(1/2)-I*2^(1/2)}</code><br><code>-.4687166361-1.730742061*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = -2^(1/2)-I*2^(1/2)}</code><br><code>-.9158051696-1.847523319*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = -2^(1/2)+I*2^(1/2)}</code><br>... skip entries to safe data<br></div></div> || Skip \n|-\n|}"
                    }
                ]
            }
        }
    }
}