Formula:KLS:14.03:27

From DRMF
Jump to navigation Jump to search


( b t ; q ) ( e i θ t ; q ) \qHyperrphis 21 @ @ a e i θ , c e i θ a c q e - i θ t = n = 0 p n ( x ; a , b , c | q ) ( a c , q ; q ) n t n q-Pochhammer-symbol 𝑏 𝑡 𝑞 q-Pochhammer-symbol imaginary-unit 𝜃 𝑡 𝑞 \qHyperrphis 21 @ @ 𝑎 imaginary-unit 𝜃 𝑐 imaginary-unit 𝜃 𝑎 𝑐 𝑞 imaginary-unit 𝜃 𝑡 superscript subscript 𝑛 0 continuous-dual-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑎 𝑐 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{\left(bt;q\right)_{\infty}}{% \left({\mathrm{e}^{\mathrm{i}\theta}}t;q\right)_{\infty}}\ \qHyperrphis{2}{1}@% @{a{\mathrm{e}^{\mathrm{i}\theta}},c{\mathrm{e}^{\mathrm{i}\theta}}}{ac}{q}{{% \mathrm{e}^{-\mathrm{i}\theta}}t}{}=\sum_{n=0}^{\infty}\frac{p_{n}\!\left(x;a,% b,c|q\right)}{\left(ac,q;q\right)_{n}}t^{n}}}}

Substitution(s)

x = cos θ 𝑥 𝜃 {\displaystyle{\displaystyle{\displaystyle x=\cos\theta}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

( a ; q ) n subscript 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
e e {\displaystyle{\displaystyle{\displaystyle\mathrm{e}}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
i i {\displaystyle{\displaystyle{\displaystyle\mathrm{i}}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Σ Σ {\displaystyle{\displaystyle{\displaystyle\Sigma}}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
p n subscript 𝑝 𝑛 {\displaystyle{\displaystyle{\displaystyle p_{n}}}}  : continuous dual q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsdualqHahn
cos cos {\displaystyle{\displaystyle{\displaystyle\mathrm{cos}}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.3 of KLS.

URL links

We ask users to provide relevant URL links in this space.