Shift operators and Rodrigues-type formulas: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:34, 6 March 2017

Shift operators and Rodrigues-type formulas

f ( x ) = d d x f ( x ) = d f d x ( x ) = d f ( x ) d x superscript 𝑓 𝑥 𝑑 𝑑 𝑥 𝑓 𝑥 𝑑 𝑓 𝑑 𝑥 𝑥 𝑑 𝑓 𝑥 𝑑 𝑥 {\displaystyle{\displaystyle{\displaystyle f^{\prime}(x)=\frac{d}{dx}f(x)=% \frac{df}{dx}(x)=\frac{df(x)}{dx}}}} {\displaystyle f'(x)=\frac{d}{dx}f(x)=\frac{df}{dx}(x)=\frac{df(x)}{dx} }
Δ f ( x ) = f ( x + 1 ) - f ( x ) Δ 𝑓 𝑥 𝑓 𝑥 1 𝑓 𝑥 {\displaystyle{\displaystyle{\displaystyle\Delta f(x)=f(x+1)-f(x)}}} {\displaystyle \Delta f(x)=f(x+1)-f(x) }
f ( x ) = f ( x ) - f ( x - 1 ) 𝑓 𝑥 𝑓 𝑥 𝑓 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\nabla f(x)=f(x)-f(x-1)}}} {\displaystyle \nabla f(x)=f(x)-f(x-1) }
δ f ( x ) = f ( x + 1 2 i ) - f ( x - 1 2 i ) 𝛿 𝑓 𝑥 𝑓 𝑥 1 2 imaginary-unit 𝑓 𝑥 1 2 imaginary-unit {\displaystyle{\displaystyle{\displaystyle\delta f(x)=f(x+\textstyle\frac{1}{2% }\mathrm{i})-f(x-\textstyle\frac{1}{2}\mathrm{i})}}} {\displaystyle \delta f(x)=f(x+\textstyle\frac{1}{2}\iunit)-f(x-\textstyle\frac{1}{2}\iunit) }
δ 2 f ( x ) = f ( x + i ) - f ( x ) - f ( x ) + f ( x - i ) = f ( x + i ) - 2 f ( x ) + f ( x - i ) superscript 𝛿 2 𝑓 𝑥 𝑓 𝑥 imaginary-unit 𝑓 𝑥 𝑓 𝑥 𝑓 𝑥 imaginary-unit 𝑓 𝑥 imaginary-unit 2 𝑓 𝑥 𝑓 𝑥 imaginary-unit {\displaystyle{\displaystyle{\displaystyle\delta^{2}f(x)=f(x+\mathrm{i})-f(x)-% f(x)+f(x-\mathrm{i})=f(x+\mathrm{i})-2f(x)+f(x-\mathrm{i})}}} {\displaystyle \delta^2 f(x)=f(x+\iunit)-f(x)-f(x)+f(x-\iunit)=f(x+\iunit)-2f(x)+f(x-\iunit) }
δ x = x + 1 2 i - ( x - 1 2 i ) = i and δ x 2 = ( x + 1 2 i ) 2 - ( x - 1 2 i ) 2 = 2 i x formulae-sequence 𝛿 𝑥 𝑥 1 2 imaginary-unit 𝑥 1 2 imaginary-unit imaginary-unit and 𝛿 superscript 𝑥 2 superscript 𝑥 1 2 imaginary-unit 2 superscript 𝑥 1 2 imaginary-unit 2 2 imaginary-unit 𝑥 {\displaystyle{\displaystyle{\displaystyle\delta x=x+\textstyle\frac{1}{2}% \mathrm{i}-(x-\textstyle\frac{1}{2}\mathrm{i})=\mathrm{i}\quad\textrm{and}% \quad\delta x^{2}=(x+\textstyle\frac{1}{2}\mathrm{i})^{2}-(x-\textstyle\frac{1% }{2}\mathrm{i})^{2}=2\mathrm{i}x}}} {\displaystyle \delta x=x+\textstyle\frac{1}{2}\iunit-(x-\textstyle\frac{1}{2}\iunit)=\iunit \quad\textrm{and}\quad \delta x^2=(x+\textstyle\frac{1}{2}\iunit)^2-(x-\textstyle\frac{1}{2}\iunit)^2=2\iunit x }
Δ λ ( x ) = 2 x + γ + δ + 2 and λ ( x ) = 2 x + γ + δ formulae-sequence Δ 𝜆 𝑥 2 𝑥 𝛾 𝛿 2 and 𝜆 𝑥 2 𝑥 𝛾 𝛿 {\displaystyle{\displaystyle{\displaystyle\Delta\lambda(x)=2x+\gamma+\delta+2% \quad\textrm{and}\quad\nabla\lambda(x)=2x+\gamma+\delta}}} {\displaystyle \Delta\lambda(x)=2x+\gamma+\delta+2\quad\textrm{and}\quad\nabla\lambda(x)=2x+\gamma+\delta }
Δ μ ( x ) = q - x - 1 ( 1 - q ) ( 1 - γ δ q 2 x + 2 ) and μ ( x ) = q - x ( 1 - q ) ( 1 - γ δ q 2 x ) formulae-sequence Δ 𝜇 𝑥 superscript 𝑞 𝑥 1 1 𝑞 1 𝛾 𝛿 superscript 𝑞 2 𝑥 2 and 𝜇 𝑥 superscript 𝑞 𝑥 1 𝑞 1 𝛾 𝛿 superscript 𝑞 2 𝑥 {\displaystyle{\displaystyle{\displaystyle\Delta\mu(x)=q^{-x-1}(1-q)(1-\gamma% \delta q^{2x+2})\quad\textrm{and}\quad\nabla\mu(x)=q^{-x}(1-q)(1-\gamma\delta q% ^{2x})}}} {\displaystyle \Delta\mu(x)=q^{-x-1}(1-q)(1-\gamma\delta q^{2x+2})\quad\textrm{and}\quad \nabla\mu(x)=q^{-x}(1-q)(1-\gamma\delta q^{2x}) }
Δ λ ( x ) = q - x - 1 ( 1 - q ) ( 1 - c q 2 x - N + 1 ) and λ ( x ) = q - x ( 1 - q ) ( 1 - c q 2 x - N - 1 ) formulae-sequence Δ 𝜆 𝑥 superscript 𝑞 𝑥 1 1 𝑞 1 𝑐 superscript 𝑞 2 𝑥 𝑁 1 and 𝜆 𝑥 superscript 𝑞 𝑥 1 𝑞 1 𝑐 superscript 𝑞 2 𝑥 𝑁 1 {\displaystyle{\displaystyle{\displaystyle\Delta\lambda(x)=q^{-x-1}(1-q)(1-cq^% {2x-N+1})\quad\textrm{and}\quad\nabla\lambda(x)=q^{-x}(1-q)(1-cq^{2x-N-1})}}} {\displaystyle \Delta\lambda(x)=q^{-x-1}(1-q)(1-cq^{2x-N+1})\quad\textrm{and}\quad \nabla\lambda(x)=q^{-x}(1-q)(1-cq^{2x-N-1}) }
Δ q - x = q - x - 1 ( 1 - q ) and q - x = q - x ( 1 - q ) formulae-sequence Δ superscript 𝑞 𝑥 superscript 𝑞 𝑥 1 1 𝑞 and superscript 𝑞 𝑥 superscript 𝑞 𝑥 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\Delta q^{-x}=q^{-x-1}(1-q)\quad% \textrm{and}\quad\nabla q^{-x}=q^{-x}(1-q)}}} {\displaystyle \Delta q^{-x}=q^{-x-1}(1-q)\quad\textrm{and}\quad\nabla q^{-x}=q^{-x}(1-q) }
D q f ( x ) := δ q f ( x ) δ q x assign subscript 𝐷 𝑞 𝑓 𝑥 subscript 𝛿 𝑞 𝑓 𝑥 subscript 𝛿 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle D_{q}f(x):=\frac{\delta_{q}f(x)}{% \delta_{q}x}}}} {\displaystyle D_qf(x):=\frac{\delta_qf(x)}{\delta_qx} }

Substitution(s): x = cos θ 𝑥 𝜃 {\displaystyle{\displaystyle{\displaystyle x=\cos\theta}}}


δ q f ( e i θ ) = f ( q 1 2 e i θ ) - f ( q - 1 2 e i θ ) subscript 𝛿 𝑞 𝑓 imaginary-unit 𝜃 𝑓 superscript 𝑞 1 2 imaginary-unit 𝜃 𝑓 superscript 𝑞 1 2 imaginary-unit 𝜃 {\displaystyle{\displaystyle{\displaystyle\delta_{q}f({\mathrm{e}^{\mathrm{i}% \theta}})=f(q^{\frac{1}{2}}{\mathrm{e}^{\mathrm{i}\theta}})-f(q^{-\frac{1}{2}}% {\mathrm{e}^{\mathrm{i}\theta}})}}} {\displaystyle \delta_qf(\expe^{\iunit\theta}) =f(q^{\frac{1}{2}}\expe^{\iunit\theta})-f(q^{-\frac{1}{2}}\expe^{\iunit\theta}) }
δ q x = - 1 2 q - 1 2 ( 1 - q ) ( e i θ - e - i θ ) subscript 𝛿 𝑞 𝑥 1 2 superscript 𝑞 1 2 1 𝑞 imaginary-unit 𝜃 imaginary-unit 𝜃 {\displaystyle{\displaystyle{\displaystyle\delta_{q}x=-\textstyle\frac{1}{2}q^% {-\frac{1}{2}}(1-q)({\mathrm{e}^{\mathrm{i}\theta}}-{\mathrm{e}^{-\mathrm{i}% \theta}})}}} {\displaystyle \delta_qx=-\textstyle\frac{1}{2}q^{-\frac{1}{2}}(1-q)(\expe^{\iunit\theta}-\expe^{-\iunit\theta}) }

Substitution(s): x = cos θ 𝑥 𝜃 {\displaystyle{\displaystyle{\displaystyle x=\cos\theta}}}