Formula:KLS:14.10:20: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
m Move page script moved page Formula:KLS:14.10:20 to F:KLS:14.10:20
 
(No difference)

Latest revision as of 08:37, 22 December 2019


δ q [ w ~ ( x ; q α , q β | q ) P n ( α , β ) ( x | q ) ] = q - 1 2 α - 1 4 ( 1 - q n + 1 ) ( 1 + q 1 2 ( α + β - 1 ) ) ( 1 + q 1 2 ( α + β ) ) ( e i θ - e - i θ ) w ~ ( x ; q α - 1 , q β - 1 | q ) P n + 1 ( α - 1 , β - 1 ) ( x | q ) subscript 𝛿 𝑞 delimited-[] ~ 𝑤 𝑥 superscript 𝑞 𝛼 conditional superscript 𝑞 𝛽 𝑞 continuous-q-Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 𝑞 superscript 𝑞 1 2 𝛼 1 4 1 superscript 𝑞 𝑛 1 1 superscript 𝑞 1 2 𝛼 𝛽 1 1 superscript 𝑞 1 2 𝛼 𝛽 imaginary-unit 𝜃 imaginary-unit 𝜃 ~ 𝑤 𝑥 superscript 𝑞 𝛼 1 conditional superscript 𝑞 𝛽 1 𝑞 superscript subscript 𝑃 𝑛 1 𝛼 1 𝛽 1 conditional 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\delta_{q}\left[{\tilde{w}}(x;q^{% \alpha},q^{\beta}|q)P^{(\alpha,\beta)}_{n}\!\left(x|q\right)\right]{}=q^{-% \frac{1}{2}\alpha-\frac{1}{4}}(1-q^{n+1})(1+q^{\frac{1}{2}(\alpha+\beta-1)})(1% +q^{\frac{1}{2}(\alpha+\beta)})({\mathrm{e}^{\mathrm{i}\theta}}-{\mathrm{e}^{-% \mathrm{i}\theta}}){}{\tilde{w}}(x;q^{\alpha-1},q^{\beta-1}|q)P_{n+1}^{(\alpha% -1,\beta-1)}(x|q)}}}

Substitution(s)

w ~ ( x ; q α , q β | q ) := w ( x ; q α , q β | q ) 1 - x 2 assign ~ 𝑤 𝑥 superscript 𝑞 𝛼 conditional superscript 𝑞 𝛽 𝑞 𝑤 𝑥 superscript 𝑞 𝛼 conditional superscript 𝑞 𝛽 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;q^{\alpha},q^{\beta}|q% ):=\frac{w(x;q^{\alpha},q^{\beta}|q)}{\sqrt{1-x^{2}}}}}} &

w ( x ) := w ( x ; q α , q β | q ) = | ( e 2 i θ ; q ) ( q 1 2 α + 1 4 e i θ , q 1 2 α + 3 4 e i θ - q 1 2 β + 1 4 e i θ , - q 1 2 β + 3 4 e i θ ; q ) | 2 = | ( e i θ , - e i θ ; q 1 2 ) ( q 1 2 α + 1 4 e i θ - q 1 2 β + 1 4 e i θ ; q 1 2 ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , q 1 2 α + 1 4 ) h ( x , q 1 2 α + 3 4 ) h ( x , - q 1 2 β + 1 4 ) h ( x , - q 1 2 β + 3 4 ) assign 𝑤 𝑥 𝑤 𝑥 superscript 𝑞 𝛼 conditional superscript 𝑞 𝛽 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 𝑞 q-Pochhammer-symbol superscript 𝑞 1 2 𝛼 1 4 imaginary-unit 𝜃 superscript 𝑞 1 2 𝛼 3 4 imaginary-unit 𝜃 superscript 𝑞 1 2 𝛽 1 4 imaginary-unit 𝜃 superscript 𝑞 1 2 𝛽 3 4 imaginary-unit 𝜃 𝑞 2 superscript q-Pochhammer-symbol imaginary-unit 𝜃 imaginary-unit 𝜃 superscript 𝑞 1 2 q-Pochhammer-symbol superscript 𝑞 1 2 𝛼 1 4 imaginary-unit 𝜃 superscript 𝑞 1 2 𝛽 1 4 imaginary-unit 𝜃 superscript 𝑞 1 2 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝛼 1 4 𝑥 superscript 𝑞 1 2 𝛼 3 4 𝑥 superscript 𝑞 1 2 𝛽 1 4 𝑥 superscript 𝑞 1 2 𝛽 3 4 {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;q^{\alpha},q^{\beta}|q)=% \left|\frac{\left({\mathrm{e}^{2\mathrm{i}\theta}};q\right)_{\infty}}{\left(q^% {\frac{1}{2}\alpha+\frac{1}{4}}{\mathrm{e}^{\mathrm{i}\theta}},q^{\frac{1}{2}% \alpha+\frac{3}{4}}{\mathrm{e}^{\mathrm{i}\theta}}-q^{\frac{1}{2}\beta+\frac{1% }{4}}{\mathrm{e}^{\mathrm{i}\theta}},-q^{\frac{1}{2}\beta+\frac{3}{4}}{\mathrm% {e}^{\mathrm{i}\theta}};q\right)_{\infty}}\right|^{2}=\left|\frac{\left({% \mathrm{e}^{\mathrm{i}\theta}},-{\mathrm{e}^{\mathrm{i}\theta}};q^{\frac{1}{2}% }\right)_{\infty}}{\left(q^{\frac{1}{2}\alpha+\frac{1}{4}}{\mathrm{e}^{\mathrm% {i}\theta}}-q^{\frac{1}{2}\beta+\frac{1}{4}}{\mathrm{e}^{\mathrm{i}\theta}};q^% {\frac{1}{2}}\right)_{\infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2% }})h(x,-q^{\frac{1}{2}})}{h(x,q^{\frac{1}{2}\alpha+\frac{1}{4}})h(x,q^{\frac{1% }{2}\alpha+\frac{3}{4}})h(x,-q^{\frac{1}{2}\beta+\frac{1}{4}})h(x,-q^{\frac{1}% {2}\beta+\frac{3}{4}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i θ , α e - i θ ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 𝛼 imaginary-unit 𝜃 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}\theta}},\alpha{\mathrm{e}^{-\mathrm{i}\theta}};q\right)_{\infty}}}} &

x = cos θ 𝑥 𝜃 {\displaystyle{\displaystyle{\displaystyle x=\cos\theta}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
P n ( α , β ) subscript superscript 𝑃 𝛼 𝛽 𝑛 {\displaystyle{\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}}}}  : continuous q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqJacobi
e e {\displaystyle{\displaystyle{\displaystyle\mathrm{e}}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
i i {\displaystyle{\displaystyle{\displaystyle\mathrm{i}}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
( a ; q ) n subscript 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Π Π {\displaystyle{\displaystyle{\displaystyle\Pi}}}  : product : http://drmf.wmflabs.org/wiki/Definition:prod
cos cos {\displaystyle{\displaystyle{\displaystyle\mathrm{cos}}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.10 of KLS.

URL links

We ask users to provide relevant URL links in this space.