Discrete q-Hermite I

From DRMF
Revision as of 00:33, 6 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search

Discrete q-Hermite I

Basic hypergeometric representation

h n ⁑ ( x ; q ) = U n ( - 1 ) ⁑ ( x ; q ) discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž q-Al-Salam-Carlitz-I-polynomial-U 1 𝑛 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)=U^{(-1)}_{n% }\!\left(x;q\right)}}} {\displaystyle \discrqHermiteI{n}@{x}{q}=\AlSalamCarlitzI{-1}{n}@{x}{q} }
h n ⁑ ( x ; q ) = q \binomial ⁒ n ⁒ 2 ⁒ \qHyperrphis ⁒ 21 ⁒ @ ⁒ @ ⁒ q - n , x - 1 ⁒ 0 ⁒ q - q ⁒ x discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž superscript π‘ž \binomial 𝑛 2 \qHyperrphis 21 @ @ superscript π‘ž 𝑛 superscript π‘₯ 1 0 π‘ž π‘ž π‘₯ {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)=q^{% \binomial{n}{2}}\,\qHyperrphis{2}{1}@@{q^{-n},x^{-1}}{0}{q}{-qx}}}} {\displaystyle \discrqHermiteI{n}@{x}{q}=q^{\binomial{n}{2}}\,\qHyperrphis{2}{1}@@{q^{-n},x^{-1}}{0}{q}{-qx} }
h n ⁑ ( x ; q ) = x n ⁒ \qHyperrphis ⁒ 20 ⁒ @ ⁒ @ ⁒ q - n , q - n + 1 ⁒ 0 ⁒ q 2 ⁒ q 2 ⁒ n - 1 x 2 discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž superscript π‘₯ 𝑛 \qHyperrphis 20 @ @ superscript π‘ž 𝑛 superscript π‘ž 𝑛 1 0 superscript π‘ž 2 superscript π‘ž 2 𝑛 1 superscript π‘₯ 2 {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)=x^{n}% \qHyperrphis{2}{0}@@{q^{-n},q^{-n+1}}{0}{q^{2}}{\frac{q^{2n-1}}{x^{2}}}}}} {\displaystyle \discrqHermiteI{n}@{x}{q}=x^n\qHyperrphis{2}{0}@@{q^{-n},q^{-n+1}}{0}{q^2}{\frac{q^{2n-1}}{x^2}} }

Orthogonality relation(s)

∫ - 1 1 ( q ⁒ x , - q ⁒ x ; q ) ∞ ⁒ h m ⁑ ( x ; q ) ⁒ h n ⁑ ( x ; q ) ⁒ d q ⁒ x = ( 1 - q ) ⁒ ( q ; q ) n ⁒ ( q , - 1 , - q ; q ) ∞ ⁒ q \binomial ⁒ n ⁒ 2 ⁒ Ξ΄ m , n superscript subscript 1 1 q-Pochhammer-symbol π‘ž π‘₯ π‘ž π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I π‘š π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž subscript 𝑑 π‘ž π‘₯ 1 π‘ž q-Pochhammer-symbol π‘ž π‘ž 𝑛 q-Pochhammer-symbol π‘ž 1 π‘ž π‘ž superscript π‘ž \binomial 𝑛 2 Kronecker-delta π‘š 𝑛 {\displaystyle{\displaystyle{\displaystyle\int_{-1}^{1}\left(qx,-qx;q\right)_{% \infty}h_{m}\!\left(x;q\right)h_{n}\!\left(x;q\right)\,d_{q}x{}=(1-q)\left(q;q% \right)_{n}\left(q,-1,-q;q\right)_{\infty}q^{\binomial{n}{2}}\,\delta_{m,n}}}} {\displaystyle \int_{-1}^1\qPochhammer{qx,-qx}{q}{\infty}\discrqHermiteI{m}@{x}{q}\discrqHermiteI{n}@{x}{q}\,d_qx {}=(1-q)\qPochhammer{q}{q}{n}\qPochhammer{q,-1,-q}{q}{\infty}q^{\binomial{n}{2}}\,\Kronecker{m}{n} }

Recurrence relation

x ⁒ h n ⁑ ( x ; q ) = h n + 1 ⁑ ( x ; q ) + q n - 1 ⁒ ( 1 - q n ) ⁒ h n - 1 ⁑ ( x ; q ) π‘₯ discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž superscript π‘ž 𝑛 1 1 superscript π‘ž 𝑛 discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle xh_{n}\!\left(x;q\right)=h_{n+1}\!% \left(x;q\right)+q^{n-1}(1-q^{n})h_{n-1}\!\left(x;q\right)}}} {\displaystyle x\discrqHermiteI{n}@{x}{q}=\discrqHermiteI{n+1}@{x}{q}+q^{n-1}(1-q^n)\discrqHermiteI{n-1}@{x}{q} }

Monic recurrence relation

x ⁒ h ^ n ⁑ ( x ) = h ^ n + 1 ⁑ ( x ) + q n - 1 ⁒ ( 1 - q n ) ⁒ h ^ n - 1 ⁑ ( x ) π‘₯ discrete-q-Hermite-polynomial-I-monic-p 𝑛 π‘₯ π‘ž discrete-q-Hermite-polynomial-I-monic-p 𝑛 1 π‘₯ π‘ž superscript π‘ž 𝑛 1 1 superscript π‘ž 𝑛 discrete-q-Hermite-polynomial-I-monic-p 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle x{\widehat{h}}_{n}\!\left(x\right)=% {\widehat{h}}_{n+1}\!\left(x\right)+q^{n-1}(1-q^{n}){\widehat{h}}_{n-1}\!\left% (x\right)}}} {\displaystyle x\monicdiscrqHermiteI{n}@@{x}{q}=\monicdiscrqHermiteI{n+1}@@{x}{q}+q^{n-1}(1-q^n)\monicdiscrqHermiteI{n-1}@@{x}{q} }
h n ⁑ ( x ; q ) = h ^ n ⁑ ( x ) discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž discrete-q-Hermite-polynomial-I-monic-p 𝑛 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)={\widehat{h% }}_{n}\!\left(x\right)}}} {\displaystyle \discrqHermiteI{n}@{x}{q}=\monicdiscrqHermiteI{n}@@{x}{q} }

q-Difference equation

- q - n + 1 ⁒ x 2 ⁒ y ⁒ ( x ) = y ⁒ ( q ⁒ x ) - ( 1 + q ) ⁒ y ⁒ ( x ) + q ⁒ ( 1 - x 2 ) ⁒ y ⁒ ( q - 1 ⁒ x ) superscript π‘ž 𝑛 1 superscript π‘₯ 2 𝑦 π‘₯ 𝑦 π‘ž π‘₯ 1 π‘ž 𝑦 π‘₯ π‘ž 1 superscript π‘₯ 2 𝑦 superscript π‘ž 1 π‘₯ {\displaystyle{\displaystyle{\displaystyle-q^{-n+1}x^{2}y(x)=y(qx)-(1+q)y(x)+q% (1-x^{2})y(q^{-1}x)}}} {\displaystyle -q^{-n+1}x^2y(x)=y(qx)-(1+q)y(x)+q(1-x^2)y(q^{-1}x) }

Substitution(s): y ⁒ ( x ) = h n ⁑ ( x ; q ) 𝑦 π‘₯ discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle y(x)=h_{n}\!\left(x;q\right)}}}


Forward shift operator

h n ⁑ ( x ; q ) - h n ⁑ ( q ⁒ x ; q ) = ( 1 - q n ) ⁒ x ⁒ h n - 1 ⁑ ( x ; q ) discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘ž π‘₯ π‘ž 1 superscript π‘ž 𝑛 π‘₯ discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)-h_{n}\!% \left(qx;q\right)=(1-q^{n})xh_{n-1}\!\left(x;q\right)}}} {\displaystyle \discrqHermiteI{n}@{x}{q}-\discrqHermiteI{n}@{qx}{q}=(1-q^n)x\discrqHermiteI{n-1}@{x}{q} }
π’Ÿ q ⁒ h n ⁑ ( x ; q ) = 1 - q n 1 - q ⁒ h n - 1 ⁑ ( x ; q ) q-derivative π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž 1 superscript π‘ž 𝑛 1 π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}h_{n}\!\left(x;q% \right)=\frac{1-q^{n}}{1-q}h_{n-1}\!\left(x;q\right)}}} {\displaystyle \qderiv{q}\discrqHermiteI{n}@{x}{q}=\frac{1-q^n}{1-q}\discrqHermiteI{n-1}@{x}{q} }

Backward shift operator

h n ⁑ ( x ; q ) - ( 1 - x 2 ) ⁒ h n ⁑ ( q - 1 ⁒ x ; q ) = q - n ⁒ x ⁒ h n + 1 ⁑ ( x ; q ) discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž 1 superscript π‘₯ 2 discrete-q-Hermite-polynomial-h-I 𝑛 superscript π‘ž 1 π‘₯ π‘ž superscript π‘ž 𝑛 π‘₯ discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(x;q\right)-(1-x^{2})h_% {n}\!\left(q^{-1}x;q\right)=q^{-n}xh_{n+1}\!\left(x;q\right)}}} {\displaystyle \discrqHermiteI{n}@{x}{q}-(1-x^2)\discrqHermiteI{n}@{q^{-1}x}{q}=q^{-n}x\discrqHermiteI{n+1}@{x}{q} }
π’Ÿ q - 1 ⁒ [ w ⁒ ( x ; q ) ⁒ h n ⁑ ( x ; q ) ] = - q - n + 1 1 - q ⁒ w ⁒ ( x ; q ) ⁒ h n + 1 ⁑ ( x ; q ) subscript π’Ÿ superscript π‘ž 1 delimited-[] 𝑀 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž superscript π‘ž 𝑛 1 1 π‘ž 𝑀 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 1 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q^{-1}}\left[w(x;q)h_{n% }\!\left(x;q\right)\right]=-\frac{q^{-n+1}}{1-q}w(x;q)h_{n+1}\!\left(x;q\right% )}}} {\displaystyle \mathcal{D}_{q^{-1}}\left[w(x;q)\discrqHermiteI{n}@{x}{q}\right] =-\frac{q^{-n+1}}{1-q}w(x;q)\discrqHermiteI{n+1}@{x}{q} }

Substitution(s): w ⁒ ( x ; q ) = ( q ⁒ x , - q ⁒ x ; q ) ∞ 𝑀 π‘₯ π‘ž q-Pochhammer-symbol π‘ž π‘₯ π‘ž π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle w(x;q)=\left(qx,-qx;q\right)_{% \infty}}}}


Rodrigues-type formula

w ⁒ ( x ; q ) ⁒ h n ⁑ ( x ; q ) = ( q - 1 ) n ⁒ q 1 2 ⁒ n ⁒ ( n - 3 ) ⁒ ( π’Ÿ q - 1 ) n ⁒ [ w ⁒ ( x ; q ) ] 𝑀 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž superscript π‘ž 1 𝑛 superscript π‘ž 1 2 𝑛 𝑛 3 superscript subscript π’Ÿ superscript π‘ž 1 𝑛 delimited-[] 𝑀 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle w(x;q)h_{n}\!\left(x;q\right)=(q-1)% ^{n}q^{\frac{1}{2}n(n-3)}\left(\mathcal{D}_{q^{-1}}\right)^{n}\left[w(x;q)% \right]}}} {\displaystyle w(x;q)\discrqHermiteI{n}@{x}{q}=(q-1)^nq^{\frac{1}{2}n(n-3)} \left(\mathcal{D}_{q^{-1}}\right)^n\left[w(x;q)\right] }

Substitution(s): w ⁒ ( x ; q ) = ( q ⁒ x , - q ⁒ x ; q ) ∞ 𝑀 π‘₯ π‘ž q-Pochhammer-symbol π‘ž π‘₯ π‘ž π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle w(x;q)=\left(qx,-qx;q\right)_{% \infty}}}}


Generating function

( t 2 ; q 2 ) ∞ ( x ⁒ t ; q ) ∞ = βˆ‘ n = 0 ∞ h n ⁑ ( x ; q ) ( q ; q ) n ⁒ t n q-Pochhammer-symbol superscript 𝑑 2 superscript π‘ž 2 q-Pochhammer-symbol π‘₯ 𝑑 π‘ž superscript subscript 𝑛 0 discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž q-Pochhammer-symbol π‘ž π‘ž 𝑛 superscript 𝑑 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{\left(t^{2};q^{2}\right)_{% \infty}}{\left(xt;q\right)_{\infty}}=\sum_{n=0}^{\infty}\frac{h_{n}\!\left(x;q% \right)}{\left(q;q\right)_{n}}t^{n}}}} {\displaystyle \frac{\qPochhammer{t^2}{q^2}{\infty}}{\qPochhammer{xt}{q}{\infty}}= \sum_{n=0}^{\infty}\frac{\discrqHermiteI{n}@{x}{q}}{\qPochhammer{q}{q}{n}}t^n }

Limit relations

Al-Salam-Carlitz I polynomial to Discrete q-Hermite I polynomial

U n ( - 1 ) ⁑ ( x ; q ) = h n ⁑ ( x ; q ) q-Al-Salam-Carlitz-I-polynomial-U 1 𝑛 π‘₯ π‘ž discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle U^{(-1)}_{n}\!\left(x;q\right)=h_{n% }\!\left(x;q\right)}}} {\displaystyle \AlSalamCarlitzI{-1}{n}@{x}{q}=\discrqHermiteI{n}@{x}{q} }

Discrete q-Hermite I polynomial to Hermite polynomial

lim q β†’ 1 ⁑ h n ⁑ ( x ⁒ 1 - q 2 ; q ) ( 1 - q 2 ) n 2 = H n ⁑ ( x ) 2 n subscript β†’ π‘ž 1 discrete-q-Hermite-polynomial-h-I 𝑛 π‘₯ 1 superscript π‘ž 2 π‘ž superscript 1 superscript π‘ž 2 𝑛 2 Hermite-polynomial-H 𝑛 π‘₯ superscript 2 𝑛 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}\frac{h_{n}\!% \left(x\sqrt{1-q^{2}};q\right)}{(1-q^{2})^{\frac{n}{2}}}=\frac{H_{n}\left(x% \right)}{2^{n}}}}} {\displaystyle \lim_{q\rightarrow 1}\frac{\discrqHermiteI{n}@{x\sqrt{1-q^2}}{q}} {(1-q^2)^{\frac{n}{2}}}=\frac{\Hermite{n}@{x}}{2^n} }

Remark

h n ⁑ ( i ⁒ x ; q - 1 ) = i n ⁒ h ~ n ⁑ ( x ; q ) discrete-q-Hermite-polynomial-h-I 𝑛 imaginary-unit π‘₯ superscript π‘ž 1 imaginary-unit 𝑛 discrete-q-Hermite-polynomial-II-h-tilde 𝑛 π‘₯ π‘ž {\displaystyle{\displaystyle{\displaystyle h_{n}\!\left(\mathrm{i}x;q^{-1}% \right)={\mathrm{i}^{n}}\tilde{h}_{n}\!\left(x;q\right)}}} {\displaystyle \discrqHermiteI{n}@{\iunit x}{q^{-1}}=\iunit^n\discrqHermiteII{n}@{x}{q} }