Formula:KLS:14.05:42

From DRMF
Revision as of 08:36, 22 December 2019 by Move page script (talk | contribs) (Move page script moved page Formula:KLS:14.05:42 to F:KLS:14.05:42)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


P n ( x ; a , b , c , d ; q ) = ( q a c - 1 x ) n ( q b , q ; q ) n ( - q a c - 1 d ; q ) n k = 0 n ( c x - 1 ; q ) n - k ( q , q a ; q ) n - k ( - q b d - 1 x ; q ) k ( q b , q ; q ) k ( - 1 ) k q 1 2 k ( k - 1 ) ( - d x - 1 ) k q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑛 superscript subscript 𝑘 0 𝑛 q-Pochhammer-symbol 𝑐 superscript 𝑥 1 𝑞 𝑛 𝑘 q-Pochhammer-symbol 𝑞 𝑞 𝑎 𝑞 𝑛 𝑘 q-Pochhammer-symbol 𝑞 𝑏 superscript 𝑑 1 𝑥 𝑞 𝑘 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑞 𝑘 superscript 1 𝑘 superscript 𝑞 1 2 𝑘 𝑘 1 superscript 𝑑 superscript 𝑥 1 𝑘 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=(% qac^{-1}x)^{n}\frac{\left(qb,q;q\right)_{n}}{\left(-qac^{-1}d;q\right)_{n}}% \sum_{k=0}^{n}\frac{\left(cx^{-1};q\right)_{n-k}}{\left(q,qa;q\right)_{n-k}}% \frac{\left(-qbd^{-1}x;q\right)_{k}}{\left(qb,q;q\right)_{k}}(-1)^{k}q^{\frac{% 1}{2}k(k-1)}(-dx^{-1})^{k}}}}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

P n subscript 𝑃 𝑛 {\displaystyle{\displaystyle{\displaystyle P_{n}}}}  : big q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Jacobi polynomial with four parameters : http://drmf.wmflabs.org/wiki/Definition:bigqJacobiIVparam
( a ; q ) n subscript 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Σ Σ {\displaystyle{\displaystyle{\displaystyle\Sigma}}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum

Bibliography

Equation in Section 14.5 of KLS.

URL links

We ask users to provide relevant URL links in this space.