Definition:qCharlier

From DRMF
Revision as of 07:49, 22 December 2019 by Move page script (talk | contribs) (Move page script moved page Definition:qCharlier to D:qCharlier)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \qCharlier represents the Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q} -Charlier polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\qCharlier{n} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qCharlier{n}}}
\qCharlier{n}@{x}{c}{q} produces Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qCharlier{n}@{x}{c}{q}}}

These are defined by Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \qCharlier{n}@{q^{-x}}{a}{q}:=\qHyperrphis{2}{1}@@{q^{-n},q^{-x}}{0}{q}{-\frac{q^{n+1}}{a}} }}

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle C_{n}}}  : Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -Charlier polynomial : http://drmf.wmflabs.org/wiki/Definition:qCharlier
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle {{}_{r}\phi_{s}}}}  : basic hypergeometric (or Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle q}} -hypergeometric) function : http://dlmf.nist.gov/17.4#E1