DLMF Results: Difference between revisions

From DRMF
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
|-
|-
| [[Item:Q30|1.2.E1]] || <math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math> || <code>binomial(n,k)=(factorial(n))/(factorial(n - k)*factorial(k))</code> || <code>Binomial[n,k]=Divide[(n)!,(n - k)!*(k)!]</code> || Successful || Successful || - || -  
| [[Item:Q30|1.2.E1]] || <math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math> || <code>binomial(n,k)=(factorial(n))/(factorial(n - k)*factorial(k))</code> || <code>Binomial[n,k]=Divide[(n)!,(n - k)!*(k)!]</code> || Successful || Successful || - || -  
|-
| [[Item:Q30|1.2.E1]] || <math>\frac{n!}{(n-k)!k!} = \binom{n}{n-k}</math> || <code>(factorial(n))/(factorial(n - k)*factorial(k))=binomial(n,n - k)</code> || <code>Divide[(n)!,(n - k)!*(k)!]=Binomial[n,n - k]</code> || Successful || Successful || - || -
|-
| [[Item:Q35|1.2.E6]] || <math>\binom{z}{k} = \frac{z(z-1)\cdots(z-k+1)}{k!}</math> || <code>binomial(z,k)=(z*(z - 1)..(z - k + 1))/(factorial(k))</code> || <code>Binomial[z,k]=Divide[z*(z - 1) ... (z - k + 1),(k)!]</code> || Successful || Successful || - || -
|-
| [[Item:Q36|1.2.E7]] || <math>\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}</math> || <code>binomial(z + 1,k)=binomial(z,k)+binomial(z,k - 1)</code> || <code>Binomial[z + 1,k]=Binomial[z,k]+Binomial[z,k - 1]</code> || Successful || Successful || - || -
|-
| [[Item:Q37|1.2.E8]] || <math>\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}</math> || <code>sum(binomial(z + k,k), k = 0..m)=binomial(z + m + 1,m)</code> || <code>Sum[Binomial[z + k,k], {k, 0, m}]=Binomial[z + m + 1,m]</code> || Successful || Successful || - || -
|-
| [[Item:Q87|1.4.E8]] || <math>f^{(2)}(x) = \deriv[2]{f}{x}</math> || <code>(f)^(2)*(x)= diff(f, [x$(2)])</code> || <code>(f)^(2)*(x)= D[f, {x, 2}]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>0.+3.999999998*I <- {f = 2^(1/2)+I*2^(1/2), x = 1}</code><br><code>0.+7.999999996*I <- {f = 2^(1/2)+I*2^(1/2), x = 2}</code><br><code>0.+11.99999999*I <- {f = 2^(1/2)+I*2^(1/2), x = 3}</code><br><code>0.-3.999999998*I <- {f = 2^(1/2)-I*2^(1/2), x = 1}</code><br><code>0.-7.999999996*I <- {f = 2^(1/2)-I*2^(1/2), x = 2}</code><br><code>0.-11.99999999*I <- {f = 2^(1/2)-I*2^(1/2), x = 3}</code><br><code>0.+3.999999998*I <- {f = -2^(1/2)-I*2^(1/2), x = 1}</code><br><code>0.+7.999999996*I <- {f = -2^(1/2)-I*2^(1/2), x = 2}</code><br><code>0.+11.99999999*I <- {f = -2^(1/2)-I*2^(1/2), x = 3}</code><br><code>0.-3.999999998*I <- {f = -2^(1/2)+I*2^(1/2), x = 1}</code><br><code>0.-7.999999996*I <- {f = -2^(1/2)+I*2^(1/2), x = 2}</code><br><code>0.-11.99999999*I <- {f = -2^(1/2)+I*2^(1/2), x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.0, 4.0] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}</code><br><code>Complex[0.0, 8.0] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}</code><br><code>Complex[0.0, 12.0] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}</code><br><code>Complex[0.0, -4.0] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}</code><br><code>Complex[0.0, -8.0] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}</code><br><code>Complex[0.0, -12.0] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}</code><br><code>Complex[0.0, 4.0] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}</code><br><code>Complex[0.0, 8.0] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}</code><br><code>Complex[0.0, 12.0] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}</code><br><code>Complex[0.0, -4.0] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}</code><br><code>Complex[0.0, -8.0] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}</code><br><code>Complex[0.0, -12.0] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}</code><br></div></div>
|-
| [[Item:Q87|1.4.E8]] || <math>\deriv[2]{f}{x} = \deriv{}{x}\left(\deriv{f}{x}\right)</math> || <code>diff(f, [x$(2)])= diff(diff(f, x), x)</code> || <code>D[f, {x, 2}]= D[D[f, x], x]</code> || Successful || Successful || - || -
|-
| [[Item:Q88|1.4.E9]] || <math>f^{(n)} = f^{(n)}(x)</math> || <code>(f)^(n)= (f)^(n)*(x)</code> || <code>(f)^(n)= (f)^(n)*(x)</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>-1.414213562-1.414213562*I <- {f = 2^(1/2)+I*2^(1/2), n = 1, x = 2}</code><br><code>-2.828427124-2.828427124*I <- {f = 2^(1/2)+I*2^(1/2), n = 1, x = 3}</code><br><code>-0.-3.999999998*I <- {f = 2^(1/2)+I*2^(1/2), n = 2, x = 2}</code><br><code>-0.-7.999999996*I <- {f = 2^(1/2)+I*2^(1/2), n = 2, x = 3}</code><br><code>5.656854245-5.656854245*I <- {f = 2^(1/2)+I*2^(1/2), n = 3, x = 2}</code><br><code>11.31370849-11.31370849*I <- {f = 2^(1/2)+I*2^(1/2), n = 3, x = 3}</code><br><code>-1.414213562+1.414213562*I <- {f = 2^(1/2)-I*2^(1/2), n = 1, x = 2}</code><br><code>-2.828427124+2.828427124*I <- {f = 2^(1/2)-I*2^(1/2), n = 1, x = 3}</code><br><code>-0.+3.999999998*I <- {f = 2^(1/2)-I*2^(1/2), n = 2, x = 2}</code><br><code>-0.+7.999999996*I <- {f = 2^(1/2)-I*2^(1/2), n = 2, x = 3}</code><br><code>5.656854245+5.656854245*I <- {f = 2^(1/2)-I*2^(1/2), n = 3, x = 2}</code><br><code>11.31370849+11.31370849*I <- {f = 2^(1/2)-I*2^(1/2), n = 3, x = 3}</code><br><code>1.414213562+1.414213562*I <- {f = -2^(1/2)-I*2^(1/2), n = 1, x = 2}</code><br><code>2.828427124+2.828427124*I <- {f = -2^(1/2)-I*2^(1/2), n = 1, x = 3}</code><br><code>-0.-3.999999998*I <- {f = -2^(1/2)-I*2^(1/2), n = 2, x = 2}</code><br><code>-0.-7.999999996*I <- {f = -2^(1/2)-I*2^(1/2), n = 2, x = 3}</code><br><code>-5.656854245+5.656854245*I <- {f = -2^(1/2)-I*2^(1/2), n = 3, x = 2}</code><br><code>-11.31370849+11.31370849*I <- {f = -2^(1/2)-I*2^(1/2), n = 3, x = 3}</code><br><code>1.414213562-1.414213562*I <- {f = -2^(1/2)+I*2^(1/2), n = 1, x = 2}</code><br><code>2.828427124-2.828427124*I <- {f = -2^(1/2)+I*2^(1/2), n = 1, x = 3}</code><br><code>-0.+3.999999998*I <- {f = -2^(1/2)+I*2^(1/2), n = 2, x = 2}</code><br><code>-0.+7.999999996*I <- {f = -2^(1/2)+I*2^(1/2), n = 2, x = 3}</code><br><code>-5.656854245-5.656854245*I <- {f = -2^(1/2)+I*2^(1/2), n = 3, x = 2}</code><br><code>-11.31370849-11.31370849*I <- {f = -2^(1/2)+I*2^(1/2), n = 3, x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[-2.8284271247461903, -2.8284271247461903] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[0.0, -4.0] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[0.0, -8.0] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[5.656854249492381, -5.656854249492381] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[11.313708498984761, -11.313708498984761] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[-2.8284271247461903, 2.8284271247461903] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[0.0, 4.0] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[0.0, 8.0] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[5.656854249492381, 5.656854249492381] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[11.313708498984761, 11.313708498984761] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[0.0, -4.0] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[0.0, -8.0] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[-5.656854249492381, 5.656854249492381] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[-11.313708498984761, 11.313708498984761] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[2.8284271247461903, -2.8284271247461903] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[0.0, 4.0] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[0.0, 8.0] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[-5.656854249492381, -5.656854249492381] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[-11.313708498984761, -11.313708498984761] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br></div></div>
|-
| [[Item:Q88|1.4.E9]] || <math>f^{(n)}(x) = \deriv{}{x}f^{(n-1)}(x)</math> || <code>(f)^(n)*(x)= diff((f)^(n - 1)*(x), x)</code> || <code>(f)^(n)*(x)= D[(f)^(n - 1)*(x), x]</code> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>.414213562+1.414213562*I <- {f = 2^(1/2)+I*2^(1/2), n = 1, x = 1}</code><br><code>1.828427124+2.828427124*I <- {f = 2^(1/2)+I*2^(1/2), n = 1, x = 2}</code><br><code>3.242640686+4.242640686*I <- {f = 2^(1/2)+I*2^(1/2), n = 1, x = 3}</code><br><code>-1.414213562+2.585786436*I <- {f = 2^(1/2)+I*2^(1/2), n = 2, x = 1}</code><br><code>-1.414213562+6.585786434*I <- {f = 2^(1/2)+I*2^(1/2), n = 2, x = 2}</code><br><code>-1.414213562+10.58578643*I <- {f = 2^(1/2)+I*2^(1/2), n = 2, x = 3}</code><br><code>-5.656854245+1.656854247*I <- {f = 2^(1/2)+I*2^(1/2), n = 3, x = 1}</code><br><code>-11.31370849+7.313708492*I <- {f = 2^(1/2)+I*2^(1/2), n = 3, x = 2}</code><br><code>-16.97056274+12.97056274*I <- {f = 2^(1/2)+I*2^(1/2), n = 3, x = 3}</code><br><code>.414213562-1.414213562*I <- {f = 2^(1/2)-I*2^(1/2), n = 1, x = 1}</code><br><code>1.828427124-2.828427124*I <- {f = 2^(1/2)-I*2^(1/2), n = 1, x = 2}</code><br><code>3.242640686-4.242640686*I <- {f = 2^(1/2)-I*2^(1/2), n = 1, x = 3}</code><br><code>-1.414213562-2.585786436*I <- {f = 2^(1/2)-I*2^(1/2), n = 2, x = 1}</code><br><code>-1.414213562-6.585786434*I <- {f = 2^(1/2)-I*2^(1/2), n = 2, x = 2}</code><br><code>-1.414213562-10.58578643*I <- {f = 2^(1/2)-I*2^(1/2), n = 2, x = 3}</code><br><code>-5.656854245-1.656854247*I <- {f = 2^(1/2)-I*2^(1/2), n = 3, x = 1}</code><br><code>-11.31370849-7.313708492*I <- {f = 2^(1/2)-I*2^(1/2), n = 3, x = 2}</code><br><code>-16.97056274-12.97056274*I <- {f = 2^(1/2)-I*2^(1/2), n = 3, x = 3}</code><br><code>-2.414213562-1.414213562*I <- {f = -2^(1/2)-I*2^(1/2), n = 1, x = 1}</code><br><code>-3.828427124-2.828427124*I <- {f = -2^(1/2)-I*2^(1/2), n = 1, x = 2}</code><br><code>-5.242640686-4.242640686*I <- {f = -2^(1/2)-I*2^(1/2), n = 1, x = 3}</code><br><code>1.414213562+5.414213560*I <- {f = -2^(1/2)-I*2^(1/2), n = 2, x = 1}</code><br><code>1.414213562+9.414213558*I <- {f = -2^(1/2)-I*2^(1/2), n = 2, x = 2}</code><br><code>1.414213562+13.41421355*I <- {f = -2^(1/2)-I*2^(1/2), n = 2, x = 3}</code><br><code>5.656854245-9.656854243*I <- {f = -2^(1/2)-I*2^(1/2), n = 3, x = 1}</code><br><code>11.31370849-15.31370849*I <- {f = -2^(1/2)-I*2^(1/2), n = 3, x = 2}</code><br><code>16.97056274-20.97056274*I <- {f = -2^(1/2)-I*2^(1/2), n = 3, x = 3}</code><br><code>-2.414213562+1.414213562*I <- {f = -2^(1/2)+I*2^(1/2), n = 1, x = 1}</code><br><code>-3.828427124+2.828427124*I <- {f = -2^(1/2)+I*2^(1/2), n = 1, x = 2}</code><br><code>-5.242640686+4.242640686*I <- {f = -2^(1/2)+I*2^(1/2), n = 1, x = 3}</code><br><code>1.414213562-5.414213560*I <- {f = -2^(1/2)+I*2^(1/2), n = 2, x = 1}</code><br><code>1.414213562-9.414213558*I <- {f = -2^(1/2)+I*2^(1/2), n = 2, x = 2}</code><br><code>1.414213562-13.41421355*I <- {f = -2^(1/2)+I*2^(1/2), n = 2, x = 3}</code><br><code>5.656854245+9.656854243*I <- {f = -2^(1/2)+I*2^(1/2), n = 3, x = 1}</code><br><code>11.31370849+15.31370849*I <- {f = -2^(1/2)+I*2^(1/2), n = 3, x = 2}</code><br><code>16.97056274+20.97056274*I <- {f = -2^(1/2)+I*2^(1/2), n = 3, x = 3}</code><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Fail<div class="mw-collapsible-content"><code>Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}</code><br><code>Complex[1.8284271247461903, 2.8284271247461903] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[3.2426406871192857, 4.242640687119286] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[-1.4142135623730951, 2.585786437626905] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}</code><br><code>Complex[-1.4142135623730951, 6.585786437626905] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[-1.4142135623730951, 10.585786437626904] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[-5.656854249492381, 1.6568542494923806] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 1]}</code><br><code>Complex[-11.313708498984761, 7.313708498984761] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[-16.970562748477143, 12.970562748477143] <- {Rule[f, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}</code><br><code>Complex[1.8284271247461903, -2.8284271247461903] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[3.2426406871192857, -4.242640687119286] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[-1.4142135623730951, -2.585786437626905] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}</code><br><code>Complex[-1.4142135623730951, -6.585786437626905] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[-1.4142135623730951, -10.585786437626904] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[-5.656854249492381, -1.6568542494923806] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 1]}</code><br><code>Complex[-11.313708498984761, -7.313708498984761] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[-16.970562748477143, -12.970562748477143] <- {Rule[f, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}</code><br><code>Complex[-3.8284271247461903, -2.8284271247461903] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[-5.242640687119286, -4.242640687119286] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[1.4142135623730951, 5.414213562373095] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}</code><br><code>Complex[1.4142135623730951, 9.414213562373096] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[1.4142135623730951, 13.414213562373096] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[5.656854249492381, -9.65685424949238] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 1]}</code><br><code>Complex[11.313708498984761, -15.313708498984761] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[16.970562748477143, -20.970562748477143] <- {Rule[f, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br><code>Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}</code><br><code>Complex[-3.8284271247461903, 2.8284271247461903] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}</code><br><code>Complex[-5.242640687119286, 4.242640687119286] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}</code><br><code>Complex[1.4142135623730951, -5.414213562373095] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}</code><br><code>Complex[1.4142135623730951, -9.414213562373096] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 2]}</code><br><code>Complex[1.4142135623730951, -13.414213562373096] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 3]}</code><br><code>Complex[5.656854249492381, 9.65685424949238] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 1]}</code><br><code>Complex[11.313708498984761, 15.313708498984761] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 2]}</code><br><code>Complex[16.970562748477143, 20.970562748477143] <- {Rule[f, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3], Rule[x, 3]}</code><br></div></div>
|-
| [[Item:Q95|1.4.E16]] || <math>\int fg\diff{x} = \left(\int f\diff{x}\right)g-\int\left(\int f\diff{x}\right)\deriv{g}{x}\diff{x}</math> || <code>int(f*g, x)=(int(f, x))* g - int((int(f, x))* diff(g, x), x)</code> || <code>Integrate[f*g, x]=(Integrate[f, x])* g - Integrate[(Integrate[f, x])* D[g, x], x]</code> || Successful || Successful || - || -
|-
|-
|}
|}
= Results of the Digital Library of Mathematical Functions =
<div style="-moz-column-count:2; column-count:2;">
# [[Algebraic and Analytic Methods]]
# [[Asymptotic Approximations]]
# [[Numerical Methods]]
# [[Elementary Functions]]
# [[Gamma Function]]
# [[Exponential, Logarithmic, Sine, and Cosine Integrals]]
# [[Error Functions, Dawson’s and Fresnel Integrals]]
# [[Incomplete Gamma and Related Functions]]
# [[Airy and Related Functions]]
# [[Bessel Functions]]
# [[Struve and Related Functions]]
# [[Parabolic Cylinder Functions]]
# [[Confluent Hypergeometric Functions]]
# [[Legendre and Related Functions]]
# [[Hypergeometric Function]]
# [[Generalized Hypergeometric Functions and Meijer G-Function|Generalized Hypergeometric Functions and Meijer ''G''-Function]]
# [[q-Hypergeometric and Related Functions|''q''-Hypergeometric and Related Functions]]
# [[Orthogonal Polynomials]]
# [[Elliptic Integrals]]
# [[Theta Functions]]
# [[Multidimensional Theta Functions]]
# [[Jacobian Elliptic Functions]]
# [[Weierstrass Elliptic and Modular Functions]]
# [[Bernoulli and Euler Polynomials]]
# [[Zeta and Related Functions]]
# [[Combinatorial Analysis]]
# [[Functions of Number Theory]]
# [[Mathieu Functions and Hill’s Equation]]
# [[Lamé Functions]]
# [[Spheroidal Wave Functions]]
# [[Heun Functions]]
# [[Painlevé Transcendents]]
# [[Coulomb Functions]]
# [[3j,6j,9j Symbols|''3j,6j,9j'' Symbols]]
# [[Functions of Matrix Argument]]
# [[Integrals with Coalescing Saddles]]
</div>

Revision as of 11:16, 17 January 2020