# Definition:ctsdualqHahn

Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \ctsdualqHahn represents the continuous dual ${\displaystyle q}$-Hahn polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsdualqHahn{n} produces $\displaystyle {\displaystyle \ctsdualqHahn{n}}$
\ctsdualqHahn{n}@{x}{a}{b}{c}{q} produces $\displaystyle {\displaystyle \ctsdualqHahn{n}@{x}{a}{b}{c}{q}}$

These are defined by $\displaystyle \frac{a^n\ctsdualqHahn{n}@{x}{a}{b}{c}{q}}{\qPochhammer{ab,ac}{q}{n}} :=\qHyperrphis{3}{2}@@{q^{-n},a\expe^{i\theta},a\expe^{-i\theta}}{ab,ac}{q}{q}. }$

## Symbols List

${\displaystyle {\displaystyle p_{n}}}$ : continuous dual ${\displaystyle {\displaystyle q}}$-Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsdualqHahn
${\displaystyle {\displaystyle (a;q)_{n}}}$ : ${\displaystyle {\displaystyle q}}$-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
${\displaystyle {\displaystyle {{}_{r}\phi _{s}}}}$ : basic hypergeometric (or ${\displaystyle {\displaystyle q}}$-hypergeometric) function : http://dlmf.nist.gov/17.4#E1
${\displaystyle {\displaystyle \mathrm {e} }}$ : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11