# Definition:ctsqLaguerre

The LaTeX DLMF and DRMF macro \ctsqLaguerre represents the continuous ${\displaystyle q}$-Laguerre polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqLaguerre{\alpha}{n} produces $\displaystyle {\displaystyle \ctsqLaguerre{\alpha}{n}}$
\ctsqLaguerre{\alpha}{n}@{x}{q} produces $\displaystyle {\displaystyle \ctsqLaguerre{\alpha}{n}@{x}{q}}$

These are defined by $\displaystyle {\displaystyle \ctsqLaguerre{\alpha}{n}@{x}{q}:=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}}\,\qHyperrphis{3}{2}@@{q^{-n},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{i\theta},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{-i\theta}}{q^{\alpha+1},0}{q}{q}.$

## Symbols List

${\displaystyle {\displaystyle P_{\alpha }^{(n)}}}$ : continuous ${\displaystyle {\displaystyle q}}$-Laguerre polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqLaguerre
${\displaystyle {\displaystyle (a;q)_{n}}}$ : ${\displaystyle {\displaystyle q}}$-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
${\displaystyle {\displaystyle {{}_{r}\phi _{s}}}}$ : basic hypergeometric (or ${\displaystyle {\displaystyle q}}$-hypergeometric) function : http://dlmf.nist.gov/17.4#E1
${\displaystyle {\displaystyle \mathrm {e} }}$ : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11