# Definition:lrselection

For the sake of compactness, we use the abbreviated \lrselection notation in a number of formulas.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following way:

\lrselection produces $\displaystyle {\displaystyle \lrselection}$

These are defined by $\displaystyle {\displaystyle \AffqKrawtchouk{n}@{q^{-x}}{p}{N}{q}=\frac{1}{\qPochhammer{pq,q^{-N}}{q}{n}}\monicAffqKrawtchouk{n}@{q^{-x}}{p}{N}{q}. }$

## Symbols List

${\displaystyle {\displaystyle \left\{{\begin{matrix}x\end{matrix}}\right\}}}$ : bracketed generalization of ${\displaystyle {\displaystyle \pm }}$ : http://drmf.wmflabs.org/wiki/Definition:Lrselection
${\displaystyle {\displaystyle K_{n}^{\mathrm {Aff} }}}$ : affine ${\displaystyle {\displaystyle q}}$-Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:AffqKrawtchouk
${\displaystyle {\displaystyle (a;q)_{n}}}$ : ${\displaystyle {\displaystyle q}}$-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
${\displaystyle {\displaystyle {\widehat {K}}_{n}^{\mathrm {Aff} }}}$ : monic affine ${\displaystyle {\displaystyle q}}$-Krawtchouk polynomial : http://drmf.wmflabs.org/wiki/Definition:monicAffqKrawtchouk