Results of Airy and Related Functions
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
9.2.E2 | w = AiryAi(z), AiryBi(z), AiryAi(z*exp(- 2*Pi*I/ 3)) |
w = AiryAi[z], AiryBi[z], AiryAi[z*Exp[- 2*Pi*I/ 3]] |
Failure | Failure | Error | Error | |
9.2.E2 | w = AiryAi(z), AiryBi(z), AiryAi(z*exp(+ 2*Pi*I/ 3)) |
w = AiryAi[z], AiryBi[z], AiryAi[z*Exp[+ 2*Pi*I/ 3]] |
Failure | Failure | Error | Error | |
9.2.E3 | AiryAi(0)=(1)/((3)^(2/ 3)* GAMMA((2)/(3))) |
AiryAi[0]=Divide[1,(3)^(2/ 3)* Gamma[Divide[2,3]]] |
Successful | Successful | - | - | |
9.2.E4 | subs( temp=0, diff( AiryAi(temp), temp$(1) ) )= -(1)/((3)^(1/ 3)* GAMMA((1)/(3))) |
(D[AiryAi[temp], {temp, 1}]/.temp-> 0)= -Divide[1,(3)^(1/ 3)* Gamma[Divide[1,3]]] |
Successful | Successful | - | - | |
9.2.E5 | AiryBi(0)=(1)/((3)^(1/ 6)* GAMMA((2)/(3))) |
AiryBi[0]=Divide[1,(3)^(1/ 6)* Gamma[Divide[2,3]]] |
Successful | Successful | - | - | |
9.2.E6 | subs( temp=0, diff( AiryBi(temp), temp$(1) ) )=((3)^(1/ 6))/(GAMMA((1)/(3))) |
(D[AiryBi[temp], {temp, 1}]/.temp-> 0)=Divide[(3)^(1/ 6),Gamma[Divide[1,3]]] |
Successful | Successful | - | - | |
9.2.E7 | (AiryAi(z))*diff(AiryBi(z), z)-diff(AiryAi(z), z)*(AiryBi(z))=(1)/(Pi) |
Wronskian[{AiryAi[z], AiryBi[z]}, z]=Divide[1,Pi] |
Failure | Successful | Successful | - | |
9.2.E8 | (AiryAi(z))*diff(AiryAi(z*exp(- 2*Pi*I/ 3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(- 2*Pi*I/ 3)))=(exp(+ Pi*I/ 6))/(2*Pi) |
Wronskian[{AiryAi[z], AiryAi[z*Exp[- 2*Pi*I/ 3]]}, z]=Divide[Exp[+ Pi*I/ 6],2*Pi] |
Failure | Successful | Successful | - | |
9.2.E8 | (AiryAi(z))*diff(AiryAi(z*exp(+ 2*Pi*I/ 3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(+ 2*Pi*I/ 3)))=(exp(- Pi*I/ 6))/(2*Pi) |
Wronskian[{AiryAi[z], AiryAi[z*Exp[+ 2*Pi*I/ 3]]}, z]=Divide[Exp[- Pi*I/ 6],2*Pi] |
Failure | Successful | Successful | - | |
9.2.E9 | (AiryAi(z*exp(- 2*Pi*I/ 3)))*diff(AiryAi(z*exp(2*Pi*I/ 3)), z)-diff(AiryAi(z*exp(- 2*Pi*I/ 3)), z)*(AiryAi(z*exp(2*Pi*I/ 3)))=(1)/(2*Pi*I) |
Wronskian[{AiryAi[z*Exp[- 2*Pi*I/ 3]], AiryAi[z*Exp[2*Pi*I/ 3]]}, z]=Divide[1,2*Pi*I] |
Failure | Successful | Successful | - | |
9.2.E10 | AiryBi(z)= exp(- Pi*I/ 6)*AiryAi(z*exp(- 2*Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(2*Pi*I/ 3)) |
AiryBi[z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[- 2*Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[2*Pi*I/ 3]] |
Failure | Successful | Successful | - | |
9.2.E11 | AiryAi(z*exp(- 2*Pi*I/ 3))=(1)/(2)*exp(- Pi*I/ 3)*(AiryAi(z)+ I*AiryBi(z)) |
AiryAi[z*Exp[- 2*Pi*I/ 3]]=Divide[1,2]*Exp[- Pi*I/ 3]*(AiryAi[z]+ I*AiryBi[z]) |
Failure | Successful | Successful | - | |
9.2.E11 | AiryAi(z*exp(+ 2*Pi*I/ 3))=(1)/(2)*exp(+ Pi*I/ 3)*(AiryAi(z)- I*AiryBi(z)) |
AiryAi[z*Exp[+ 2*Pi*I/ 3]]=Divide[1,2]*Exp[+ Pi*I/ 3]*(AiryAi[z]- I*AiryBi[z]) |
Failure | Successful | Successful | - | |
9.2.E12 | AiryAi(z)+ exp(- 2*Pi*I/ 3)*AiryAi(z*exp(- 2*Pi*I/ 3))+ exp(2*Pi*I/ 3)*AiryAi(z*exp(2*Pi*I/ 3))= 0 |
AiryAi[z]+ Exp[- 2*Pi*I/ 3]*AiryAi[z*Exp[- 2*Pi*I/ 3]]+ Exp[2*Pi*I/ 3]*AiryAi[z*Exp[2*Pi*I/ 3]]= 0 |
Failure | Successful | Successful | - | |
9.2.E13 | AiryBi(z)+ exp(- 2*Pi*I/ 3)*AiryBi(z*exp(- 2*Pi*I/ 3))+ exp(2*Pi*I/ 3)*AiryBi(z*exp(2*Pi*I/ 3))= 0 |
AiryBi[z]+ Exp[- 2*Pi*I/ 3]*AiryBi[z*Exp[- 2*Pi*I/ 3]]+ Exp[2*Pi*I/ 3]*AiryBi[z*Exp[2*Pi*I/ 3]]= 0 |
Failure | Successful | Successful | - | |
9.2.E14 | AiryAi(- z)= exp(Pi*I/ 3)*AiryAi(z*exp(Pi*I/ 3))+ exp(- Pi*I/ 3)*AiryAi(z*exp(- Pi*I/ 3)) |
AiryAi[- z]= Exp[Pi*I/ 3]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[- Pi*I/ 3]*AiryAi[z*Exp[- Pi*I/ 3]] |
Failure | Successful | Successful | - | |
9.2.E15 | AiryBi(- z)= exp(- Pi*I/ 6)*AiryAi(z*exp(Pi*I/ 3))+ exp(Pi*I/ 6)*AiryAi(z*exp(- Pi*I/ 3)) |
AiryBi[- z]= Exp[- Pi*I/ 6]*AiryAi[z*Exp[Pi*I/ 3]]+ Exp[Pi*I/ 6]*AiryAi[z*Exp[- Pi*I/ 3]] |
Failure | Successful | Successful | - | |
9.5.E1 | AiryAi(x)=(1)/(Pi)*int(cos((1)/(3)*(t)^(3)+ x*t), t = 0..infinity) |
AiryAi[x]=Divide[1,Pi]*Integrate[Cos[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}] |
Successful | Failure | - | Successful | |
9.5.E2 | AiryAi(- x)=((x)^((1)/(2)))/(Pi)*int(cos((x)^((3)/(2))*((1)/(3)*(t)^(3)+ (t)^(2)-(2)/(3))), t = - 1..infinity) |
AiryAi[- x]=Divide[(x)^(Divide[1,2]),Pi]*Integrate[Cos[(x)^(Divide[3,2])*(Divide[1,3]*(t)^(3)+ (t)^(2)-Divide[2,3])], {t, - 1, Infinity}] |
Failure | Failure | Skip | Error | |
9.5.E3 | AiryBi(x)=(1)/(Pi)*int(exp(-(1)/(3)*(t)^(3)+ x*t), t = 0..infinity)+(1)/(Pi)*int(sin((1)/(3)*(t)^(3)+ x*t), t = 0..infinity) |
AiryBi[x]=Divide[1,Pi]*Integrate[Exp[-Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}]+Divide[1,Pi]*Integrate[Sin[Divide[1,3]*(t)^(3)+ x*t], {t, 0, Infinity}] |
Failure | Failure | Skip | Successful | |
9.5.E4 | AiryAi(z)=(1)/(2*Pi*I)*int(exp((1)/(3)*(t)^(3)- z*t), t = infinity*exp(- Pi*I/ 3)..infinity*exp(Pi*I/ 3)) |
AiryAi[z]=Divide[1,2*Pi*I]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, Infinity*Exp[- Pi*I/ 3], Infinity*Exp[Pi*I/ 3]}] |
Failure | Failure | Skip | Skip | |
9.5.E5 | AiryBi(z)=(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(Pi*I/ 3))+(1)/(2*Pi)*int(exp((1)/(3)*(t)^(3)- z*t), t = - infinity..infinity*exp(- Pi*I/ 3)) |
AiryBi[z]=Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[Pi*I/ 3]}]+Divide[1,2*Pi]*Integrate[Exp[Divide[1,3]*(t)^(3)- z*t], {t, - Infinity, Infinity*Exp[- Pi*I/ 3]}] |
Failure | Failure | Skip | Skip | |
9.5.E6 | AiryAi(z)=(sqrt(3))/(2*Pi)*int(exp(-((t)^(3))/(3)-((z)^(3))/(3*(t)^(3))), t = 0..infinity) |
AiryAi[z]=Divide[Sqrt[3],2*Pi]*Integrate[Exp[-Divide[(t)^(3),3]-Divide[(z)^(3),3*(t)^(3)]], {t, 0, Infinity}] |
Successful | Failure | - | Successful | |
9.5.E7 | AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2))))/(Pi)*int(exp(- (z)^((1)/(2))* (t)^(2))*cos((1)/(3)*(t)^(3)), t = 0..infinity) |
AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])],Pi]*Integrate[Exp[- (z)^(Divide[1,2])* (t)^(2)]*Cos[Divide[1,3]*(t)^(3)], {t, 0, Infinity}] |
Failure | Failure | Skip | Skip | |
9.5.E8 | AiryAi(z)=(exp(-(2)/(3)*(z)^((3)/(2)))*(2)/(3)*((z)^((3)/(2)))^((- 1)/(6)))/(sqrt(Pi)*(48)^((1)/(6))* GAMMA((5)/(6)))*int(exp(- t)*(t)^(-(1)/(6))*(2 +(t)/((2)/(3)*(z)^((3)/(2))))^(-(1)/(6)), t = 0..infinity) |
AiryAi[z]=Divide[Exp[-Divide[2,3]*(z)^(Divide[3,2])]*Divide[2,3]*((z)^(Divide[3,2]))^(Divide[- 1,6]),Sqrt[Pi]*(48)^(Divide[1,6])* Gamma[Divide[5,6]]]*Integrate[Exp[- t]*(t)^(-Divide[1,6])*(2 +Divide[t,Divide[2,3]*(z)^(Divide[3,2])])^(-Divide[1,6]), {t, 0, Infinity}] |
Failure | Failure | Skip | Fail
Complex[-0.014252654553766713, -0.04024893384084034] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-0.014252654553766713, 0.04024893384084034] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} | |
9.6.E2 | AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2))) |
AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] |
Failure | Failure | Fail 2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)} 2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E2 | AiryAi(z)= (Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2))) |
AiryAi[z]= (Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] |
Failure | Failure | Fail 2.833765278-.3039461853*I <- {z = -2^(1/2)-I*2^(1/2)} 2.833765278+.3039461853*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[2.8337652800788264, -0.3039461861802381] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8337652800788264, 0.3039461861802381] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E2 | (Pi)^(- 1)*sqrt(z/ 3)*BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))) |
(Pi)^(- 1)*Sqrt[z/ 3]*BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E2 | (Pi)^(- 1)*sqrt(z/ 3)*BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))) |
(Pi)^(- 1)*Sqrt[z/ 3]*BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E2 | (1)/(3)*sqrt(z)*(BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) |
Divide[1,3]*Sqrt[z]*(BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] |
Failure | Failure | Skip | Fail
Complex[-2.8337652800788247, 0.30394618618023783] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} | |
9.6.E2 | (1)/(2)*sqrt(z/ 3)*exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) |
Divide[1,2]*Sqrt[z/ 3]*Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] |
Successful | Failure | - | Successful | |
9.6.E2 | (1)/(2)*sqrt(z/ 3)*exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) |
Divide[1,2]*Sqrt[z/ 3]*Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] |
Failure | Failure | Skip | Fail
Complex[2.8337652800788256, -0.3039461861802379] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.8337652800788247, -0.3039461861802372] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E2 | (1)/(2)*sqrt(z/ 3)*exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*sqrt(z/ 3)*exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) |
Divide[1,2]*Sqrt[z/ 3]*Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*Sqrt[z/ 3]*Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] |
Successful | Failure | - | Successful | |
9.6.E3 | subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2))) |
(D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] |
Failure | Failure | Fail -.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)} -.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E3 | subs( temp=z, diff( AiryAi(temp), temp$(1) ) )= - (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2))) |
(D[AiryAi[temp], {temp, 1}]/.temp-> z)= - (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])] |
Failure | Failure | Fail -.7883076520+3.485863958*I <- {z = -2^(1/2)-I*2^(1/2)} -.7883076520-3.485863958*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.7883076520663912, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.7883076520663912, -3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E3 | - (Pi)^(- 1)*(z/sqrt(3))* BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
- (Pi)^(- 1)*(z/Sqrt[3])* BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E3 | - (Pi)^(- 1)*(z/sqrt(3))* BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
- (Pi)^(- 1)*(z/Sqrt[3])* BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E3 | (z/ 3)*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) |
(z/ 3)*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] |
Failure | Failure | Skip | Fail
Complex[0.7883076520663918, -3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} | |
9.6.E3 | (1)/(2)*(z/sqrt(3))* exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)) |
Divide[1,2]*(z/Sqrt[3])* Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]] |
Successful | Failure | - | Successful | |
9.6.E3 | (1)/(2)*(z/sqrt(3))* exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) |
Divide[1,2]*(z/Sqrt[3])* Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] |
Failure | Failure | Skip | Fail
Complex[-0.7883076520663909, 3.485863960601928] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.7883076520663926, 3.485863960601928] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E3 | (1)/(2)*(z/sqrt(3))* exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))=(1)/(2)*(z/sqrt(3))* exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2)) |
Divide[1,2]*(z/Sqrt[3])* Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]=Divide[1,2]*(z/Sqrt[3])* Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]] |
Successful | Failure | - | Successful | |
9.6.E4 | AiryBi(z)=sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) |
AiryBi[z]=Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail .323091265e-1+.116725832*I <- {z = -2^(1/2)-I*2^(1/2)} .323091265e-1-.116725832*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.032309126109843156, 0.11672583064563491] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.032309126109843156, -0.11672583064563491] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E4 | sqrt(z/ 3)*(BesselI(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) |
Sqrt[z/ 3]*(BesselI[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) |
Failure | Failure | Fail -.1681276560-1.475245556*I <- {z = -2^(1/2)-I*2^(1/2)} -.1681276560+1.475245556*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.16812765614504083, -1.4752455553622306] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.16812765614504083, 1.4752455553622306] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E4 | (1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) |
Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) |
Successful | Failure | - | Successful | |
9.6.E5 | subs( temp=z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
(D[AiryBi[temp], {temp, 1}]/.temp-> z)=(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail .181539689+.267445042e-1*I <- {z = -2^(1/2)-I*2^(1/2)} .181539689-.267445042e-1*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.18153969005752768, 0.026744504839266825] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.18153969005752768, -0.026744504839266825] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E5 | (z/sqrt(3))*(BesselI(2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) |
(z/Sqrt[3])*(BesselI[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) |
Failure | Failure | Fail 1.652162135+.3807815744*I <- {z = -2^(1/2)-I*2^(1/2)} 1.652162135-.3807815744*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[1.6521621352721998, 0.3807815736135619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.6521621352721998, -0.3807815736135619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E5 | (1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2)))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(- Pi*I/ 2))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2))*exp(Pi*I/ 2))) |
Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[- Pi*I/ 2]]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])*Exp[Pi*I/ 2]]) |
Successful | Failure | - | Successful | |
9.6.E6 | AiryAi(- z)=(sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) |
AiryAi[- z]=(Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail -.5274645816-.7652257224e-1*I <- {z = -2^(1/2)-I*2^(1/2)} -.5274645816+.7652257224e-1*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.5274645818155765, -0.0765225723412053] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.5274645818155765, 0.0765225723412053] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E6 | (sqrt(z)/ 3)*(BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2)))) |
(Sqrt[z]/ 3)*(BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Failure | - | Successful | |
9.6.E6 | (1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 6)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 6)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(- Pi*I/ 6)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) |
Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 6]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 6]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[- Pi*I/ 6]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E7 | subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )=(z/ 3)*(BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
(D[AiryAi[temp], {temp, 1}]/.temp-> - z)=(z/ 3)*(BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail -.6239178317-.1120108402*I <- {z = -2^(1/2)-I*2^(1/2)} -.6239178317+.1120108402*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.6239178317433629, -0.1120108405877985] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.6239178317433629, 0.1120108405877985] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E7 | (z/ 3)*(BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2)))) |
(z/ 3)*(BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Failure | - | Successful | |
9.6.E7 | (1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 6)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 6)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- 5*Pi*I/ 6)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(5*Pi*I/ 6)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 6]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 6]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- 5*Pi*I/ 6]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[5*Pi*I/ 6]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E8 | AiryBi(- z)=sqrt(z/ 3)*(BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2)))) |
AiryBi[- z]=Sqrt[z/ 3]*(BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail .4111747943+1.355498750*I <- {z = -2^(1/2)-I*2^(1/2)} .4111747943-1.355498750*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.41117479327057227, 1.355498750084894] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.41117479327057227, -1.355498750084894] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E8 | sqrt(z/ 3)*(BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))- BesselJ(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2)))) |
Sqrt[z/ 3]*(BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]- BesselJ[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Failure | - | Successful | |
9.6.E8 | (1)/(2)*sqrt(z/ 3)*(exp(2*Pi*I/ 3)*HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- 2*Pi*I/ 3)*HankelH2(1/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*sqrt(z/ 3)*(exp(Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(- 1/ 3, (2)/(3)*(z)^((3)/(2)))) |
Divide[1,2]*Sqrt[z/ 3]*(Exp[2*Pi*I/ 3]*HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- 2*Pi*I/ 3]*HankelH2[1/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*Sqrt[z/ 3]*(Exp[Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E9 | subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )=(z/sqrt(3))*(BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2)))) |
(D[AiryBi[temp], {temp, 1}]/.temp-> - z)=(z/Sqrt[3])*(BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Failure | Failure | Fail -1.338452844+1.884861589*I <- {z = -2^(1/2)-I*2^(1/2)} -1.338452844-1.884861589*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-1.338452844987923, 1.884861589266007] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.338452844987923, -1.884861589266007] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E9 | (z/sqrt(3))*(BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ BesselJ(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2)))) |
(z/Sqrt[3])*(BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ BesselJ[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Failure | - | Successful | |
9.6.E9 | (1)/(2)*(z/sqrt(3))*(exp(Pi*I/ 3)*HankelH1(2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(- Pi*I/ 3)*HankelH2(2/ 3, (2)/(3)*(z)^((3)/(2))))=(1)/(2)*(z/sqrt(3))*(exp(- Pi*I/ 3)*HankelH1(- 2/ 3, (2)/(3)*(z)^((3)/(2)))+ exp(Pi*I/ 3)*HankelH2(- 2/ 3, (2)/(3)*(z)^((3)/(2)))) |
Divide[1,2]*(z/Sqrt[3])*(Exp[Pi*I/ 3]*HankelH1[2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[- Pi*I/ 3]*HankelH2[2/ 3, Divide[2,3]*(z)^(Divide[3,2])])=Divide[1,2]*(z/Sqrt[3])*(Exp[- Pi*I/ 3]*HankelH1[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]+ Exp[Pi*I/ 3]*HankelH2[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]) |
Successful | Successful | - | - | |
9.6.E11 | BesselJ(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(sqrt(3)*AiryAi(- z)- AiryBi(- z)) |
BesselJ[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(Sqrt[3]*AiryAi[- z]- AiryBi[- z]) |
Failure | Failure | Fail -.5314179186+1.098214195*I <- {z = -2^(1/2)-I*2^(1/2)} -.5314179186-1.098214195*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.531417918807772, 1.09821419470116] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.531417918807772, -1.09821419470116] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E11 | BesselJ(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(sqrt(3)*AiryAi(- z)+ AiryBi(- z)) |
BesselJ[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(Sqrt[3]*AiryAi[- z]+ AiryBi[- z]) |
Failure | Failure | Fail .8096382420-.23450870e-2*I <- {z = -2^(1/2)-I*2^(1/2)} .8096382420+.23450870e-2*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.8096382422763857, -0.0023450862884800416] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.8096382422763857, 0.0023450862884800416] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E12 | BesselJ(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(+sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) |
BesselJ[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(+Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z)) |
Failure | Failure | Fail -.2229822889+1.258414134*I <- {z = -2^(1/2)-I*2^(1/2)} -.2229822889-1.258414134*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-0.22298228919670726, 1.2584141341459216] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.22298228919670726, -1.2584141341459216] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E12 | BesselJ(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(-sqrt(3)*subs( temp=- z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=- z, diff( AiryBi(temp), temp$(1) ) )) |
BesselJ[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(-Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> - z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> - z)) |
Failure | Failure | Fail .5575879430+.7154547765*I <- {z = -2^(1/2)-I*2^(1/2)} .5575879430-.7154547765*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.5575879428157583, 0.7154547769715692] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.5575879428157583, -0.7154547769715692] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E13 | BesselI(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(-sqrt(3)*AiryAi(z)+ AiryBi(z)) |
BesselI[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(-Sqrt[3]*AiryAi[z]+ AiryBi[z]) |
Failure | Failure | Fail 1.506527799+2.607865458*I <- {z = -2^(1/2)-I*2^(1/2)} 1.506527799-2.607865458*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[1.5065278006053275, 2.6078654586738588] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.5065278006053275, -2.6078654586738588] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E13 | BesselI(- 1/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*sqrt(3/ z)*(+sqrt(3)*AiryAi(z)+ AiryBi(z)) |
BesselI[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*Sqrt[3/ z]*(+Sqrt[3]*AiryAi[z]+ AiryBi[z]) |
Failure | Failure | Fail -1.389593520-2.699131954*I <- {z = -2^(1/2)-I*2^(1/2)} -1.389593520+2.699131954*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-1.3895935221249858, -2.6991319545588484] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3895935221249858, 2.6991319545588484] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E14 | BesselI(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(+sqrt(3)*subs( temp=z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=z, diff( AiryBi(temp), temp$(1) ) )) |
BesselI[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(+Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> z)) |
Failure | Failure | Fail 1.494369018+2.219325646*I <- {z = -2^(1/2)-I*2^(1/2)} 1.494369018-2.219325646*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[1.4943690186714658, 2.219325646151564] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.4943690186714658, -2.219325646151564] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E14 | BesselI(- 2/ 3, (2)/(3)*(z)^((3)/(2)))=(1)/(2)*(sqrt(3)/ z)*(-sqrt(3)*subs( temp=z, diff( AiryAi(temp), temp$(1) ) )+ subs( temp=z, diff( AiryBi(temp), temp$(1) ) )) |
BesselI[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]=Divide[1,2]*(Sqrt[3]/ z)*(-Sqrt[3]*(D[AiryAi[temp], {temp, 1}]/.temp-> z)+ (D[AiryBi[temp], {temp, 1}]/.temp-> z)) |
Failure | Failure | Fail -1.366821518-2.314117950*I <- {z = -2^(1/2)-I*2^(1/2)} -1.366821518+2.314117950*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-1.366821518925578, -2.3141179507576517] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.366821518925578, 2.3141179507576517] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E15 | BesselK(+ 1/ 3, (2)/(3)*(z)^((3)/(2)))= Pi*sqrt(3/ z)*AiryAi(z) |
BesselK[+ 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Pi*Sqrt[3/ z]*AiryAi[z] |
Failure | Failure | Fail -5.252983010-9.625828533*I <- {z = -2^(1/2)-I*2^(1/2)} -5.252983010+9.625828533*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-5.252983013913404, -9.625828534114124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.252983013913404, 9.625828534114124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E15 | BesselK(- 1/ 3, (2)/(3)*(z)^((3)/(2)))= Pi*sqrt(3/ z)*AiryAi(z) |
BesselK[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Pi*Sqrt[3/ z]*AiryAi[z] |
Failure | Failure | Fail -5.252983010-9.625828533*I <- {z = -2^(1/2)-I*2^(1/2)} -5.252983010+9.625828533*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-5.252983013913404, -9.625828534114124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.252983013913404, 9.625828534114124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E16 | BesselK(+ 2/ 3, (2)/(3)*(z)^((3)/(2)))= - Pi*(sqrt(3)/ z)* subs( temp=z, diff( AiryAi(temp), temp$(1) ) ) |
BesselK[+ 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= - Pi*(Sqrt[3]/ z)* (D[AiryAi[temp], {temp, 1}]/.temp-> z) |
Failure | Failure | Fail -5.189625577-8.222757114*I <- {z = -2^(1/2)-I*2^(1/2)} -5.189625577+8.222757114*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-5.189625578046477, -8.222757113865619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.189625578046477, 8.222757113865619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E16 | BesselK(- 2/ 3, (2)/(3)*(z)^((3)/(2)))= - Pi*(sqrt(3)/ z)* subs( temp=z, diff( AiryAi(temp), temp$(1) ) ) |
BesselK[- 2/ 3, Divide[2,3]*(z)^(Divide[3,2])]= - Pi*(Sqrt[3]/ z)* (D[AiryAi[temp], {temp, 1}]/.temp-> z) |
Failure | Failure | Fail -5.189625577-8.222757114*I <- {z = -2^(1/2)-I*2^(1/2)} -5.189625577+8.222757114*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[-5.189625578046477, -8.222757113865619] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.189625578046477, 8.222757113865619] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
9.6.E17 | HankelH1(1/ 3, (2)/(3)*(z)^((3)/(2)))= exp(- Pi*I/ 3)*HankelH1(- 1/ 3, (2)/(3)*(z)^((3)/(2))) |
HankelH1[1/ 3, Divide[2,3]*(z)^(Divide[3,2])]= Exp[- Pi*I/ 3]*HankelH1[- 1/ 3, Divide[2,3]*(z)^(Divide[3,2])] |
Successful | Successful | - | - | |
9.6.E17 |