# Results of Bessel Functions

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.2.E1 ${\displaystyle{\displaystyle z^{2}\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+% z\frac{\mathrm{d}w}{\mathrm{d}z}+(z^{2}-\nu^{2})w=0}}$ (z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)+((z)^(2)- (nu)^(2))* w = 0 (z)^(2)* D[w, {z, 2}]+ z*D[w, z]+((z)^(2)- (\[Nu])^(2))* w = 0 Failure Failure Fail 11.31370849-11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} -11.31370849+11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} 11.31370849+11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} 11.31370849-11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)} -11.31370849-11.31370849*I <- {nu = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)} Fail Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-11.313708498984761, -11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[11.313708498984761, 11.313708498984761] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 10.2.E2 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=(\tfrac{1}{2}z)^{\nu}\sum_{% k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\Gamma\left(\nu+k+1% \right)}}}$ BesselJ(nu, z)=((1)/(2)*z)^(nu)* sum((- 1)^(k)*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity) BesselJ[\[Nu], z]=(Divide[1,2]*z)^(\[Nu])* Sum[(- 1)^(k)*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}] Successful Successful - - 10.2.E3 ${\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{J_{\nu}\left(z\right)% \cos\left(\nu\pi\right)-J_{-\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}$ BesselY(nu, z)=(BesselJ(nu, z)*cos(nu*Pi)- BesselJ(- nu, z))/(sin(nu*Pi)) BesselY[\[Nu], z]=Divide[BesselJ[\[Nu], z]*Cos[\[Nu]*Pi]- BesselJ[- \[Nu], z],Sin[\[Nu]*Pi]] Successful Successful - - 10.4#Ex1 ${\displaystyle{\displaystyle J_{-n}\left(z\right)=(-1)^{n}J_{n}\left(z\right)}}$ BesselJ(- n, z)=(- 1)^(n)* BesselJ(n, z) BesselJ[- n, z]=(- 1)^(n)* BesselJ[n, z] Failure Failure Successful Successful 10.4#Ex2 ${\displaystyle{\displaystyle Y_{-n}\left(z\right)=(-1)^{n}Y_{n}\left(z\right)}}$ BesselY(- n, z)=(- 1)^(n)* BesselY(n, z) BesselY[- n, z]=(- 1)^(n)* BesselY[n, z] Failure Failure Successful Successful 10.4#Ex3 ${\displaystyle{\displaystyle{H^{(1)}_{-n}}\left(z\right)=(-1)^{n}{H^{(1)}_{n}}% \left(z\right)}}$ HankelH1(- n, z)=(- 1)^(n)* HankelH1(n, z) HankelH1[- n, z]=(- 1)^(n)* HankelH1[n, z] Successful Failure - Successful 10.4#Ex4 ${\displaystyle{\displaystyle{H^{(2)}_{-n}}\left(z\right)=(-1)^{n}{H^{(2)}_{n}}% \left(z\right)}}$ HankelH2(- n, z)=(- 1)^(n)* HankelH2(n, z) HankelH2[- n, z]=(- 1)^(n)* HankelH2[n, z] Failure Failure Successful Successful 10.4#Ex5 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )+iY_{\nu}\left(z\right)}}$ HankelH1(nu, z)= BesselJ(nu, z)+ I*BesselY(nu, z) HankelH1[\[Nu], z]= BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z] Failure Successful Successful - 10.4#Ex6 ${\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )-iY_{\nu}\left(z\right)}}$ HankelH2(nu, z)= BesselJ(nu, z)- I*BesselY(nu, z) HankelH2[\[Nu], z]= BesselJ[\[Nu], z]- I*BesselY[\[Nu], z] Failure Successful Successful - 10.4#Ex7 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2}\left({H^{(1)}_{% \nu}}\left(z\right)+{H^{(2)}_{\nu}}\left(z\right)\right)}}$ BesselJ(nu, z)=(1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z)) BesselJ[\[Nu], z]=Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z]) Successful Successful - - 10.4#Ex8 ${\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{1}{2i}\left({H^{(1)}_% {\nu}}\left(z\right)-{H^{(2)}_{\nu}}\left(z\right)\right)}}$ BesselY(nu, z)=(1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z)) BesselY[\[Nu], z]=Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z]) Successful Successful - - 10.4.E5 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\csc\left(\nu\pi\right)% \left(Y_{-\nu}\left(z\right)-Y_{\nu}\left(z\right)\cos\left(\nu\pi\right)% \right)}}$ BesselJ(nu, z)= csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi)) BesselJ[\[Nu], z]= Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi]) Successful Successful - - 10.4#Ex9 ${\displaystyle{\displaystyle{H^{(1)}_{-\nu}}\left(z\right)=e^{\nu\pi i}{H^{(1)% }_{\nu}}\left(z\right)}}$ HankelH1(- nu, z)= exp(nu*Pi*I)*HankelH1(nu, z) HankelH1[- \[Nu], z]= Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z] Successful Failure - Successful 10.4#Ex10 ${\displaystyle{\displaystyle{H^{(2)}_{-\nu}}\left(z\right)=e^{-\nu\pi i}{H^{(2% )}_{\nu}}\left(z\right)}}$ HankelH2(- nu, z)= exp(- nu*Pi*I)*HankelH2(nu, z) HankelH2[- \[Nu], z]= Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z] Successful Failure - Successful 10.4.E7 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(e^{-\nu\pi i}J_{\nu}\left(z\right)-J_{-\nu}\left(z\right)\right)}}$ HankelH1(nu, z)= I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) HankelH1[\[Nu], z]= I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) Successful Successful - - 10.4.E7 ${\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(e^{-\nu\pi i}J_{\nu% }\left(z\right)-J_{-\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(Y_{% -\nu}\left(z\right)-e^{-\nu\pi i}Y_{\nu}\left(z\right)\right)}}$ I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))= csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z)) I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])= Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z]) Failure Successful Successful - 10.4.E8 ${\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(J_{-\nu}\left(z\right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)}}$ HankelH2(nu, z)= I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) HankelH2[\[Nu], z]= I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) Successful Successful - - 10.4.E8 ${\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(J_{-\nu}\left(z% \right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(% Y_{-\nu}\left(z\right)-e^{\nu\pi i}Y_{\nu}\left(z\right)\right)}}$ I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))= csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z)) I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])= Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z]) Failure Successful Successful - 10.5.E1 ${\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),J_{-\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{\nu}% \left(z\right)J_{-\nu-1}\left(z\right)}}$ (BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z))= BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z]= BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] Successful Successful - - 10.5.E1 ${\displaystyle{\displaystyle J_{\nu+1}\left(z\right)J_{-\nu}\left(z\right)+J_{% \nu}\left(z\right)J_{-\nu-1}\left(z\right)=-2\sin\left(\nu\pi\right)/(\pi z)}}$ BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z)= - 2*sin(nu*Pi)/(Pi*z) BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z]= - 2*Sin[\[Nu]*Pi]/(Pi*z) Failure Successful Successful - 10.5.E2 ${\displaystyle{\displaystyle\mathscr{W}\left\{J_{\nu}\left(z\right),Y_{\nu}% \left(z\right)\right\}=J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{\nu}% \left(z\right)Y_{\nu+1}\left(z\right)}}$ (BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z))= BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z]= BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] Successful Successful - - 10.5.E2 ${\displaystyle{\displaystyle J_{\nu+1}\left(z\right)Y_{\nu}\left(z\right)-J_{% \nu}\left(z\right)Y_{\nu+1}\left(z\right)=2/(\pi z)}}$ BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z)= 2/(Pi*z) BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z]= 2/(Pi*z) Failure Successful Successful - 10.5.E3 ${\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(1)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(1)}_{\nu+1}}\left(z\right)=2i/(\pi z)}}$ BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z)= 2*I/(Pi*z) BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z]= 2*I/(Pi*z) Failure Successful Successful - 10.5.E4 ${\displaystyle{\displaystyle J_{\nu+1}\left(z\right){H^{(2)}_{\nu}}\left(z% \right)-J_{\nu}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-2i/(\pi z)}}$ BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z)= - 2*I/(Pi*z) BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z]= - 2*I/(Pi*z) Failure Successful Successful - 10.5.E5 ${\displaystyle{\displaystyle\mathscr{W}\left\{{H^{(1)}_{\nu}}\left(z\right),{H% ^{(2)}_{\nu}}\left(z\right)\right\}={H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{% \nu}}\left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z% \right)}}$ (HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z))= HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z]= HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] Successful Successful - - 10.5.E5 ${\displaystyle{\displaystyle{H^{(1)}_{\nu+1}}\left(z\right){H^{(2)}_{\nu}}% \left(z\right)-{H^{(1)}_{\nu}}\left(z\right){H^{(2)}_{\nu+1}}\left(z\right)=-4% i/(\pi z)}}$ HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z)= - 4*I/(Pi*z) HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z]= - 4*I/(Pi*z) Failure Successful Successful - 10.6#Ex11 ${\displaystyle{\displaystyle p_{\nu}=J_{\nu}\left(a\right)Y_{\nu}\left(b\right% )-J_{\nu}\left(b\right)Y_{\nu}\left(a\right)}}$ p[nu]= BesselJ(nu, a)*BesselY(nu, b)- BesselJ(nu, b)*BesselY(nu, a) Subscript[p, \[Nu]]= BesselJ[\[Nu], a]*BesselY[\[Nu], b]- BesselJ[\[Nu], b]*BesselY[\[Nu], a] Failure Failure Fail 1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 4.348650218+3.015924364*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 4.348650218+.187497240*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 1.520223094+.187497240*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 1.520223094+3.015924364*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -1.520223094+3.015924364*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -1.520223094+.1874972397*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -4.348650218+.1874972397*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -4.348650218+3.015924364*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 4.34865021+3.01592436*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 4.34865021+.18749724*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 1.52022309+.18749724*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 1.52022309+3.01592436*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -1.52022309+3.01592436*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -1.52022309+.18749724*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -4.34865021+.18749724*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -4.34865021+3.01592436*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.55685518-13.99893021*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.55685518-16.82735733*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.38528230-16.82735733*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.38528230-13.99893021*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 6.374923539-6.573677327*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 6.374923539-9.402104451*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 3.546496415-9.402104451*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 3.546496415-6.573677327*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.55685517-13.99893020*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.55685517-16.82735733*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.38528229-16.82735733*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.38528229-13.99893020*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 6.37492353-6.57367732*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 6.37492353-9.40210444*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 3.54649641-9.40210444*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 3.54649641-6.57367732*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .8063697426+1.732521184*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .8063697426-1.095905940*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022057381-1.095905940*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022057381+1.732521184*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.02205741+1.7325212*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.02205741-1.0959060*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.80636971-1.0959060*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.80636971+1.7325212*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .806370+1.732521*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .806370-1.095907*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022058-1.095907*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022058+1.732521*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022057382+1.732521183*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022057382-1.095905940*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.8063697420-1.095905940*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.8063697420+1.732521183*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -1.520223094-.1874972397*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -1.520223094-3.015924364*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -4.348650218-3.015924364*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -4.348650218-.1874972397*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 4.348650218-.187497240*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 4.348650218-3.015924364*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 1.520223094-3.015924364*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 1.520223094-.187497240*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -1.52022309-.18749724*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -1.52022309-3.01592436*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -4.34865021-3.01592436*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -4.34865021-.18749724*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 4.34865021-.18749724*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 4.34865021-3.01592436*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 1.52022309-3.01592436*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 1.52022309-.18749724*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.02205741+1.0959060*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.02205741-1.7325212*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.80636971-1.7325212*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.80636971+1.0959060*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .8063697426+1.095905940*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .8063697426-1.732521184*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022057381-1.732521184*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022057381+1.095905940*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022057382+1.095905940*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022057382-1.732521183*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.8063697420-1.732521183*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.8063697420+1.095905940*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .806370+1.095907*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .806370-1.732521*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022058-1.732521*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022058+1.095907*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 6.374923539+9.402104451*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 6.374923539+6.573677327*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 3.546496415+6.573677327*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 3.546496415+9.402104451*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.55685518+16.82735733*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.55685518+13.99893021*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.38528230+13.99893021*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.38528230+16.82735733*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 6.37492353+9.40210444*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 6.37492353+6.57367732*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 3.54649641+6.57367732*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 3.54649641+9.40210444*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.55685517+16.82735733*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.55685517+13.99893020*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.38528229+13.99893020*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.38528229+16.82735733*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.38528230+16.82735733*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.38528230+13.99893021*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.55685518+13.99893021*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.55685518+16.82735733*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -3.546496415+9.402104451*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -3.546496415+6.573677327*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -6.374923539+6.573677327*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -6.374923539+9.402104451*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.38528230+16.82735732*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.38528230+13.99893020*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.55685517+13.99893020*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.55685517+16.82735732*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -3.54649641+9.40210444*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -3.54649641+6.57367732*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -6.37492353+6.57367732*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -6.37492353+9.40210444*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .80636971+1.7325212*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .80636971-1.0959060*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.02205741-1.0959060*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.02205741+1.7325212*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022057381+1.732521184*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022057381-1.095905940*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.8063697426-1.095905940*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.8063697426+1.732521184*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .8063697425+1.732521184*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .8063697425-1.095905940*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022057382-1.095905940*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022057382+1.732521184*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022058+1.732521*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022058-1.095907*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.806370-1.095907*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.806370+1.732521*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.84051400-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.84051400-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.66894112-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.66894112-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.66894112-57.20034197*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.66894112-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.84051400-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.84051400-57.20034197*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.84051400-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.84051400-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.66894112-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.66894112-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.66894112-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.66894112-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.84051400-60.02876910*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.84051400-57.20034198*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022057381+1.095905940*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022057381-1.732521184*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.8063697426-1.732521184*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.8063697426+1.095905940*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .80636971+1.0959060*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .80636971-1.7325212*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.02205741-1.7325212*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.02205741+1.0959060*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 2.022058+1.095907*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 2.022058-1.732521*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -.806370-1.732521*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -.806370+1.095907*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} .8063697425+1.095905940*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} .8063697425-1.732521184*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -2.022057382-1.732521184*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -2.022057382+1.095905940*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -3.546496415-6.573677327*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -3.546496415-9.402104451*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -6.374923539-9.402104451*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -6.374923539-6.573677327*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.38528230-13.99893021*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.38528230-16.82735733*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.55685518-16.82735733*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.55685518-13.99893021*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -3.54649641-6.57367732*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -3.54649641-9.40210444*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -6.37492353-9.40210444*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -6.37492353-6.57367732*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.38528230-13.99893020*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.38528230-16.82735732*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.55685517-16.82735732*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.55685517-13.99893020*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.66894112+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.66894112+57.20034197*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.84051400+57.20034197*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.84051400+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.84051400+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.84051400+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.66894112+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.66894112+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 16.66894112+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 16.66894112+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} 13.84051400+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} 13.84051400+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} -13.84051400+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} -13.84051400+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -16.66894112+57.20034198*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -16.66894112+60.02876910*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} 1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)+I*2^(1/2)} 1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = 2^(1/2)-I*2^(1/2)} -1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)-I*2^(1/2)} -1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), p[nu] = -2^(1/2)+I*2^(1/2)} Skip 10.6#Ex12 ${\displaystyle{\displaystyle q_{\nu}=J_{\nu}\left(a\right)Y_{\nu}'\left(b% \right)-J_{\nu}'\left(b\right)Y_{\nu}\left(a\right)}}$ q[nu]= BesselJ(nu, a)*subs( temp=b, diff( BesselY(nu, temp), temp$(1) ) )- subs( temp=b, diff( BesselJ(nu, temp), temp$(1) ) )*BesselY(nu, a) Subscript[q, \[Nu]]= BesselJ[\[Nu], a]*(D[BesselY[\[Nu], temp], {temp, 1}]/.temp-> b)- (D[BesselJ[\[Nu], temp], {temp, 1}]/.temp-> b)*BesselY[\[Nu], a] Failure Failure Fail 1.189134483+1.639292641*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.189134483*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.189134483*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.639292641*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.18913448+1.63929264*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.18913448-1.18913448*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.63929264-1.18913448*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.63929264+1.63929264*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.1891346+1.6392928*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.1891346-1.1891344*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.6392926-1.1891344*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.6392926+1.6392928*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.189134482+1.639292640*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.189134482-1.189134484*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.639292642-1.189134484*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.639292642+1.639292640*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.889066698+5.175919000*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.889066698+2.347491876*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.717493822+2.347491876*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.717493822+5.175919000*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 2.419001592-.8076561521*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 2.419001592-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.4094255317-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.4094255317-.8076561521*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.88906668+5.17591901*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.88906668+2.34749189*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.71749380+2.34749189*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.71749380+5.17591901*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 2.41900159-.8076561517*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 2.41900159-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.40942553-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.40942553-.8076561517*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.80385927+9.336912208*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.80385927+6.508485084*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.975432149+6.508485084*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.975432149+9.336912208*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -11.20868920-5.907442729*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -11.20868920-8.735869853*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -14.03711632-8.735869853*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -14.03711632-5.907442729*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.80385927+9.336912199*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.80385927+6.508485079*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.975432147+6.508485079*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.975432147+9.336912199*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -11.20868919-5.9074427*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -11.20868919-8.7358699*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -14.03711631-8.7358699*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -14.03711631-5.9074427*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} .8397974499+.4262484587*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} .8397974499-2.402178665*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.988629674-2.402178665*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.988629674+.4262484587*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.04511848+1.09369324*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.04511848-1.73473388*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.78330864-1.73473388*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.78330864+1.09369324*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} .839797+.426250*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} .839797-2.402178*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.988631-2.402178*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.988631+.426250*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.045118505+1.093693256*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.045118505-1.734733868*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.783308618-1.734733868*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.783308618+1.093693256*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 2.419001592+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 2.419001592+.8076561521*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.4094255317+.8076561521*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.4094255317+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.889066698-2.347491876*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.889066698-5.175919000*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.717493822-5.175919000*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.717493822-2.347491876*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 2.41900159+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 2.41900159+.8076561517*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.40942553+.8076561517*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.40942553+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.88906668-2.34749189*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.88906668-5.17591901*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.71749380-5.17591901*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.71749380-2.34749189*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.18913448+1.18913448*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.18913448-1.63929264*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.63929264-1.63929264*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.63929264+1.18913448*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.189134483+1.189134483*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.639292641*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.639292641*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.189134483*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.189134482+1.189134484*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.189134482-1.639292640*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.639292642-1.639292640*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.639292642+1.189134484*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.1891346+1.1891344*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.1891346-1.6392928*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.6392926-1.6392928*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.6392926+1.1891344*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.04511848+1.73473388*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.04511848-1.09369324*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.78330864-1.09369324*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.78330864+1.73473388*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} .8397974499+2.402178665*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} .8397974499-.4262484587*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.988629674-.4262484587*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.988629674+2.402178665*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.045118505+1.734733868*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.045118505-1.093693256*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.783308618-1.093693256*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.783308618+1.734733868*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} .839797+2.402178*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} .839797-.426250*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.988631-.426250*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.988631+2.402178*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -11.20868920+8.735869853*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -11.20868920+5.907442729*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -14.03711632+5.907442729*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -14.03711632+8.735869853*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.80385927-6.508485084*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.80385927-9.336912208*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.975432149-9.336912208*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.975432149-6.508485084*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -11.20868919+8.7358699*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -11.20868919+5.9074427*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -14.03711631+5.9074427*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -14.03711631+8.7358699*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.80385927-6.508485079*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.80385927-9.336912199*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.975432147-9.336912199*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.975432147-6.508485079*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.543168567-14.20173225*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.543168567-17.03015937*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.371595691-17.03015937*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.371595691-14.20173225*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.32995526+7.439585112*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.32995526+4.611157988*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.501528139+4.611157988*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.501528139+7.439585112*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.543168568-14.20173226*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.543168568-17.03015938*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.371595692-17.03015938*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.371595692-14.20173226*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.32995524+7.4395852*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.32995524+4.6111580*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.50152812+4.6111580*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.50152812+7.4395852*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.9886297+2.40217864*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.9886297-.42624848*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.8397975-.42624848*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.8397975+2.40217864*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.783308618+1.734733868*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.783308618-1.093693256*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.045118506-1.093693256*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.045118506+1.734733868*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.988629675+2.402178666*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.988629675-.4262484586*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.8397974494-.4262484586*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.8397974494+2.402178666*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.7833087+1.734735*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.7833087-1.093693*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.0451185-1.093693*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.0451185+1.734735*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.63929270+1.1891345*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.63929270-1.6392927*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.18913442-1.6392927*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.18913442+1.1891345*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.639292641+1.189134483*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.639292641*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.639292641*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.189134483*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.639292641+1.189134482*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.639292642*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.639292642*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.189134482*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.63930+1.1891350*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.63930-1.6392922*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.18912-1.6392922*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.18912+1.1891350*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 93.06899019-19.52376201*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 93.06899019-22.35218913*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 90.24056307-22.35218913*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 90.24056307-19.52376201*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -15.48788619+36.69236261*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -15.48788619+33.86393549*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -18.31631332+33.86393549*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -18.31631332+36.69236261*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 93.06899019-19.52376200*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 93.06899019-22.35218912*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 90.24056307-22.35218912*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 90.24056307-19.52376200*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -15.48788620+36.69236260*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -15.48788620+33.86393548*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -18.31631332+33.86393548*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -18.31631332+36.69236260*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.783308618+1.093693256*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.783308618-1.734733868*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.045118506-1.734733868*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.045118506+1.093693256*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.9886297+.42624848*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.9886297-2.40217864*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.8397975-2.40217864*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.8397975+.42624848*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.7833087+1.093693*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.7833087-1.734735*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.0451185-1.734735*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.0451185+1.093693*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.988629675+.4262484586*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.988629675-2.402178666*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -.8397974494-2.402178666*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -.8397974494+.4262484586*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.32995526-4.611157988*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.32995526-7.439585112*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.501528139-7.439585112*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.501528139-4.611157988*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.543168567+17.03015937*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.543168567+14.20173225*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.371595691+14.20173225*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.371595691+17.03015937*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 12.32995524-4.6111580*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 12.32995524-7.4395852*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 9.50152812-7.4395852*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 9.50152812-4.6111580*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -.543168568+17.03015938*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -.543168568+14.20173226*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -3.371595692+14.20173226*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -3.371595692+17.03015938*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -15.48788619-33.86393549*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -15.48788619-36.69236261*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -18.31631332-36.69236261*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -18.31631332-33.86393549*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 93.06899019+22.35218913*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 93.06899019+19.52376201*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 90.24056307+19.52376201*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 90.24056307+22.35218913*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} -15.48788620-33.86393548*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} -15.48788620-36.69236260*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -18.31631332-36.69236260*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -18.31631332-33.86393548*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 93.06899019+22.35218912*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 93.06899019+19.52376200*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} 90.24056307+19.52376200*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} 90.24056307+22.35218912*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.639292641+1.639292641*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.189134483*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.189134483*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.639292641*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.63929270+1.6392927*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.63929270-1.1891345*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.18913442-1.1891345*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.18913442+1.6392927*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.63930+1.6392922*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.63930-1.1891350*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.18912-1.1891350*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.18912+1.6392922*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} 1.639292641+1.639292642*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.189134482*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.189134482*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.639292642*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), q[nu] = -2^(1/2)+I*2^(1/2)} Skip 10.6#Ex13 ${\displaystyle{\displaystyle r_{\nu}=J_{\nu}'\left(a\right)Y_{\nu}\left(b% \right)-J_{\nu}\left(b\right)Y_{\nu}'\left(a\right)}}$ r[nu]= subs( temp=a, diff( BesselJ(nu, temp), temp$(1) ) )*BesselY(nu, b)- BesselJ(nu, b)*subs( temp=a, diff( BesselY(nu, temp), temp$(1) ) ) Subscript[r, \[Nu]]= (D[BesselJ[\[Nu], temp], {temp, 1}]/.temp-> a)*BesselY[\[Nu], b]- BesselJ[\[Nu], b]*(D[BesselY[\[Nu], temp], {temp, 1}]/.temp-> a) Failure Failure Fail 1.639292641+1.189134483*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.639292641*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.639292641*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.189134483*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.63929264+1.18913448*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.63929264-1.63929264*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.18913448-1.63929264*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.18913448+1.18913448*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.6392926+1.1891344*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.6392926-1.6392928*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.1891346-1.6392928*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.1891346+1.1891344*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.639292642+1.189134484*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.639292642-1.639292640*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.189134482-1.639292640*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.189134482+1.189134484*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .409425532-.8076561521*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .409425532-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -2.419001592-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -2.419001592-.8076561521*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.717493822+5.175919000*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.717493822+2.347491876*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .889066698+2.347491876*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .889066698+5.175919000*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .40942553-.807656152*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .40942553-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -2.41900159-3.636083276*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -2.41900159-.807656152*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.71749380+5.17591901*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.71749380+2.34749189*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .88906668+2.34749189*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .88906668+5.17591901*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.371595691+17.03015937*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.371595691+14.20173225*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .543168567+14.20173225*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .543168567+17.03015937*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.501528139-4.611157988*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.501528139-7.439585112*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.32995526-7.439585112*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.32995526-4.611157988*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.371595692+17.03015938*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.371595692+14.20173226*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .543168568+14.20173226*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .543168568+17.03015938*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.50152812-4.6111580*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.50152812-7.4395852*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.32995524-7.4395852*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.32995524-4.6111580*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.045118506+1.734733868*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.045118506-1.093693256*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.783308618-1.093693256*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.783308618+1.734733868*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .8397975+2.40217864*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .8397975-.42624848*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.9886297-.42624848*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.9886297+2.40217864*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.0451185+1.734735*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.0451185-1.093693*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.7833087-1.093693*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.7833087+1.734735*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .8397974496+2.402178666*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .8397974496-.4262484586*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.988629675-.4262484586*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.988629675+2.402178666*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.717493822-2.347491876*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.717493822-5.175919000*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .889066698-5.175919000*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .889066698-2.347491876*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .409425532+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .409425532+.8076561521*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -2.419001592+.8076561521*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -2.419001592+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.71749380-2.34749189*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.71749380-5.17591901*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .88906668-5.17591901*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .88906668-2.34749189*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .40942553+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .40942553+.807656152*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -2.41900159+.807656152*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -2.41900159+3.636083276*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.63929264+1.63929264*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.63929264-1.18913448*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.18913448-1.18913448*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.18913448+1.63929264*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.639292641+1.639292641*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.639292641-1.189134483*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.189134483-1.189134483*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.189134483+1.639292641*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.639292642+1.639292640*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.639292642-1.189134484*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.189134482-1.189134484*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.189134482+1.639292640*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.6392926+1.6392928*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.6392926-1.1891344*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.1891346-1.1891344*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.1891346+1.6392928*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .8397975+.42624848*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .8397975-2.40217864*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.9886297-2.40217864*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.9886297+.42624848*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.045118506+1.093693256*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.045118506-1.734733868*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.783308618-1.734733868*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.783308618+1.093693256*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} .8397974496+.4262484586*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} .8397974496-2.402178666*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.988629675-2.402178666*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.988629675+.4262484586*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.0451185+1.093693*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.0451185-1.734735*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.7833087-1.734735*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.7833087+1.093693*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.501528139+7.439585112*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.501528139+4.611157988*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.32995526+4.611157988*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.32995526+7.439585112*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.371595691-14.20173225*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.371595691-17.03015937*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .543168567-17.03015937*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .543168567-14.20173225*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.50152812+7.4395852*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.50152812+4.6111580*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.32995524+4.6111580*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.32995524+7.4395852*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 3.371595692-14.20173226*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 3.371595692-17.03015938*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} .543168568-17.03015938*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} .543168568-14.20173226*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.975432149-6.508485084*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.975432149-9.336912206*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.80385927-9.336912206*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.80385927-6.508485084*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 14.03711632+8.735869853*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 14.03711632+5.907442729*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 11.20868919+5.907442729*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 11.20868919+8.735869853*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.975432147-6.508485077*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.975432147-9.336912201*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.80385927-9.336912201*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.80385927-6.508485077*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 14.03711631+8.7358699*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 14.03711631+5.9074427*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 11.20868919+5.9074427*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 11.20868919+8.7358699*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.78330864+1.09369324*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.78330864-1.73473388*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.04511848-1.73473388*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.04511848+1.09369324*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.988629674+.4262484586*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.988629674-2.402178665*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -.8397974499-2.402178665*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -.8397974499+.4262484586*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.783308618+1.093693256*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.783308618-1.734733868*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.045118506-1.734733868*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.045118506+1.093693256*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.988631+.426250*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.988631-2.402178*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -.839797-2.402178*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -.839797+.426250*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.18913442+1.6392927*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.18913442-1.1891345*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.63929270-1.1891345*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.63929270+1.6392927*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.189134483+1.639292641*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.189134483*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.189134483*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.639292641*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.189134483+1.639292642*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.189134482*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.189134482*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.639292642*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.18912+1.6392922*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.18912-1.1891350*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.63930-1.1891350*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.63930+1.6392922*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 18.31631331+36.69236261*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 18.31631331+33.86393549*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 15.48788619+33.86393549*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 15.48788619+36.69236261*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -90.24056307-19.52376201*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -90.24056307-22.35218913*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -93.06899020-22.35218913*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -93.06899020-19.52376201*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 18.31631332+36.69236260*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 18.31631332+33.86393548*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 15.48788620+33.86393548*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 15.48788620+36.69236260*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -90.24056307-19.52376200*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -90.24056307-22.35218912*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -93.06899019-22.35218912*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -93.06899019-19.52376200*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.988629674+2.402178665*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.988629674-.4262484586*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -.8397974499-.4262484586*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -.8397974499+2.402178665*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.78330864+1.73473388*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.78330864-1.09369324*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.04511848-1.09369324*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.04511848+1.73473388*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.988631+2.402178*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.988631-.426250*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -.839797-.426250*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -.839797+2.402178*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.783308618+1.734733868*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.783308618-1.093693256*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.045118506-1.093693256*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.045118506+1.734733868*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 14.03711632-5.907442729*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 14.03711632-8.735869853*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 11.20868919-8.735869853*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 11.20868919-5.907442729*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.975432149+9.336912206*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.975432149+6.508485084*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.80385927+6.508485084*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.80385927+9.336912206*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 14.03711631-5.9074427*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 14.03711631-8.7358699*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 11.20868919-8.7358699*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 11.20868919-5.9074427*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -9.975432147+9.336912201*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -9.975432147+6.508485077*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -12.80385927+6.508485077*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -12.80385927+9.336912201*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -90.24056307+22.35218913*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -90.24056307+19.52376201*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -93.06899020+19.52376201*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -93.06899020+22.35218913*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 18.31631331-33.86393549*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 18.31631331-36.69236261*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 15.48788619-36.69236261*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 15.48788619-33.86393549*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} -90.24056307+22.35218912*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} -90.24056307+19.52376200*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -93.06899019+19.52376200*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -93.06899019+22.35218912*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 18.31631332-33.86393548*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 18.31631332-36.69236260*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} 15.48788620-36.69236260*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} 15.48788620-33.86393548*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.189134483+1.189134483*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.639292641*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.639292641*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.189134483*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.18913442+1.1891345*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.18913442-1.6392927*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.63929270-1.6392927*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.63929270+1.1891345*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.18912+1.1891350*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.18912-1.6392922*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.63930-1.6392922*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.63930+1.1891350*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} 1.189134483+1.189134482*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)+I*2^(1/2)} 1.189134483-1.639292642*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = 2^(1/2)-I*2^(1/2)} -1.639292641-1.639292642*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)-I*2^(1/2)} -1.639292641+1.189134482*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), r[nu] = -2^(1/2)+I*2^(1/2)} Skip 10.6#Ex14 ${\displaystyle{\displaystyle s_{\nu}=J_{\nu}'\left(a\right)Y_{\nu}'\left(b% \right)-J_{\nu}'\left(b\right)Y_{\nu}'\left(a\right)}}$ s[nu]= subs( temp=a, diff( BesselJ(nu, temp), temp$(1) ) )*subs( temp=b, diff( BesselY(nu, temp), temp$(1) ) )- subs( temp=b, diff( BesselJ(nu, temp), temp$(1) ) )*subs( temp=a, diff( BesselY(nu, temp), temp\$(1) ) ) Subscript[s, \[Nu]]= (D[BesselJ[\[Nu], temp], {temp, 1}]/.temp-> a)*(D[BesselY[\[Nu], temp], {temp, 1}]/.temp-> b)- (D[BesselJ[\[Nu], temp], {temp, 1}]/.temp-> b)*(D[BesselY[\[Nu], temp], {temp, 1}]/.temp-> a) Failure Failure
Fail
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.434639355+.221488357*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.434639355-2.606938767*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.606212231-2.606938767*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.606212231+.221488357*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.606212231+.221488357*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.606212231-2.606938767*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.434639355-2.606938767*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.434639355+.221488357*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.434639353+.22148833*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.434639353-2.60693879*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.606212229-2.60693879*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.606212229+.22148833*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.606212229+.22148833*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.606212229-2.60693879*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.434639353-2.60693879*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.434639353+.22148833*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.755617236-8.245223911*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.755617236-11.07365104*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.584044360-11.07365104*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.584044360-8.245223911*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-7.431222799+18.63431494*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-7.431222799+15.80588782*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-10.25964993+15.80588782*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-10.25964993+18.63431494*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.755617238-8.245223914*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.755617238-11.07365104*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.584044362-11.07365104*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.584044362-8.245223914*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-7.4312229+18.63431488*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-7.4312229+15.80588776*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-10.2596501+15.80588776*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-10.2596501+18.63431488*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845180028+.8921775228*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845180028-1.936249601*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909121-1.936249601*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909121+.8921775228*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.8439091+.89217754*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.8439091-1.93624958*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845181-1.93624958*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845181+.89217754*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.984519+.8921775*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.984519-1.9362497*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909-1.9362497*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909+.8921775*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909121+.8921775226*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909121-1.936249602*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845180029-1.936249602*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845180029+.8921775226*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.606212231+2.606938767*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.606212231-.221488357*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.434639355-.221488357*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.434639355+2.606938767*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.434639355+2.606938767*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.434639355-.221488357*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.606212231-.221488357*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.606212231+2.606938767*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.606212229+2.60693879*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.606212229-.22148833*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.434639353-.22148833*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.434639353+2.60693879*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.434639353+2.60693879*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.434639353-.22148833*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.606212229-.22148833*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.606212229+2.60693879*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.8439091+1.93624958*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.8439091-.89217754*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845181-.89217754*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845181+1.93624958*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845180028+1.936249601*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845180028-.8921775228*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909121-.8921775228*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909121+1.936249601*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909121+1.936249602*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909121-.8921775226*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845180029-.8921775226*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845180029+1.936249602*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.984519+1.9362497*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.984519-.8921775*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909-.8921775*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909+1.9362497*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-7.431222799-15.80588782*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-7.431222799-18.63431494*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-10.25964993-18.63431494*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-10.25964993-15.80588782*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.755617236+11.07365104*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.755617236+8.245223911*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.584044360+8.245223911*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.584044360+11.07365104*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-7.4312229-15.80588776*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-7.4312229-18.63431488*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-10.2596501-18.63431488*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-10.2596501-15.80588776*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-1.755617238+11.07365104*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-1.755617238+8.245223914*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-4.584044362+8.245223914*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-4.584044362+11.07365104*I <- {a = 2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.584044360+11.07365104*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.584044360+8.245223911*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.755617236+8.245223911*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.755617236+11.07365104*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
10.25964992-15.80588782*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
10.25964992-18.63431494*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
7.431222799-18.63431494*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
7.431222799-15.80588782*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.584044362+11.07365104*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.584044362+8.245223914*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.755617238+8.245223914*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.755617238+11.07365104*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
10.2596501-15.80588776*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
10.2596501-18.63431488*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
7.4312229-18.63431488*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
7.4312229-15.80588776*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845181+.89217754*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845181-1.93624958*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.8439091-1.93624958*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.8439091+.89217754*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909121+.8921775225*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909121-1.936249602*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845180030-1.936249602*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845180030+.8921775225*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845180028+.8921775221*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845180028-1.936249602*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909121-1.936249602*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909121+.8921775221*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909+.8921775*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909-1.9362497*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.984519-1.9362497*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.984519+.8921775*I <- {a = -2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-54.10985401+25.99698119*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-54.10985401+23.16855407*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-56.93828113+23.16855407*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-56.93828113+25.99698119*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
56.93828114+25.99698119*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
56.93828114+23.16855406*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
54.10985401+23.16855406*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
54.10985401+25.99698119*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-54.10985398+25.99698120*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-54.10985398+23.16855408*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-56.93828110+23.16855408*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-56.93828110+25.99698120*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
56.93828110+25.99698120*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
56.93828110+23.16855408*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
54.10985398+23.16855408*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
54.10985398+25.99698120*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909121+1.936249602*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909121-.8921775225*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.9845180030-.8921775225*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.9845180030+1.936249602*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845181+1.93624958*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845181-.89217754*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.8439091-.89217754*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.8439091+1.93624958*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.843909+1.9362497*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.843909-.8921775*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-.984519-.8921775*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-.984519+1.9362497*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
.9845180028+1.936249602*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
.9845180028-.8921775221*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.843909121-.8921775221*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.843909121+1.936249602*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
10.25964992+18.63431494*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
10.25964992+15.80588782*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
7.431222799+15.80588782*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
7.431222799+18.63431494*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.584044360-8.245223911*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.584044360-11.07365104*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.755617236-11.07365104*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.755617236-8.245223911*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
10.2596501+18.63431488*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
10.2596501+15.80588776*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
7.4312229+15.80588776*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
7.4312229+18.63431488*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
4.584044362-8.245223914*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
4.584044362-11.07365104*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
1.755617238-11.07365104*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
1.755617238-8.245223914*I <- {a = -2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
56.93828114-23.16855406*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
56.93828114-25.99698119*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
54.10985401-25.99698119*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
54.10985401-23.16855406*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-54.10985401-23.16855407*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-54.10985401-25.99698119*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-56.93828113-25.99698119*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-56.93828113-23.16855407*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
56.93828110-23.16855408*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
56.93828110-25.99698120*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
54.10985398-25.99698120*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
54.10985398-23.16855408*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
-54.10985398-23.16855408*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
-54.10985398-25.99698120*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-56.93828110-25.99698120*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-56.93828110-23.16855408*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), s[nu] = -2^(1/2)+I*2^(1/2)}
Skip
10.8.E1 ${\displaystyle{\displaystyle Y_{n}\left(z\right)=-\frac{(\tfrac{1}{2}z)^{-n}}{% \pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\tfrac{1}{4}z^{2}\right)^{k}+% \frac{2}{\pi}\ln\left(\tfrac{1}{2}z\right)J_{n}\left(z\right)-\frac{(\tfrac{1}% {2}z)^{n}}{\pi}\sum_{k=0}^{\infty}(\psi\left(k+1\right)+\psi\left(n+k+1\right)% )\frac{(-\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}}}$ BesselY(n, z)= -(((1)/(2)*z)^(- n))/(Pi)*sum((factorial(n - k - 1))/(factorial(k))*((1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(2)/(Pi)*ln((1)/(2)*z)*BesselJ(n, z)-(((1)/(2)*z)^(n))/(Pi)*sum((Psi(k + 1)+ Psi(n + k + 1))*((-(1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity) BesselY[n, z]= -Divide[(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(n - k - 1)!,(k)!]*(Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}]+Divide[2,Pi]*Log[Divide[1,2]*z]*BesselJ[n, z]-Divide[(Divide[1,2]*z)^(n),Pi]*Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(-Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}] Error Failure - Successful
10.9.E1 ${\displaystyle{\displaystyle J_{0}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta\right)\mathrm{d}\theta}}$ BesselJ(0, z)=(1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi) BesselJ[0, z]=Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}] Successful Failure -
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[BesselJ[0, z], Times[-1, BesselJ[0, Abs[z]]]], Element[z, Reals]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[BesselJ[0, z], Times[-1, BesselJ[0, Abs[z]]]], Element[z, Reals]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[Plus[BesselJ[0, z], Times[-1, BesselJ[0, Abs[z]]]], Element[z, Reals]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[Plus[BesselJ[0, z], Times[-1, BesselJ[0, Abs[z]]]], Element[z, Reals]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
10.9.E1 ${\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\sin\theta% \right)\mathrm{d}\theta=\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\cos\theta\right% )\mathrm{d}\theta}}$ (1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi)=(1)/(Pi)*int(cos(z*cos(theta)), theta = 0..Pi) Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}]=Divide[1,Pi]*Integrate[Cos[z*Cos[\[Theta]]], {\[Theta], 0, Pi}] Successful Failure -
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[0, Element[z, Reals]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[0, Element[z, Reals]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[ConditionalExpression[0, Element[z, Reals]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[ConditionalExpression[0, Element[z, Reals]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
10.9.E2 ${\displaystyle{\displaystyle J_{n}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta-n\theta\right)\mathrm{d}\theta}}$ BesselJ(n, z)=(1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi) BesselJ[n, z]=Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}] Failure Failure Skip Error
10.9.E2 ${\displaystyle{\displaystyle\frac{1}{\pi}\int_{0}^{\pi}\cos\left(z\sin\theta-n% \theta\right)\mathrm{d}\theta=\frac{i^{-n}}{\pi}\int_{0}^{\pi}e^{iz\cos\theta}% \cos\left(n\theta\right)\mathrm{d}\theta}}$ (1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi)=((I)^(- n))/(Pi)*int(exp(I*z*cos(theta))*cos(n*theta), theta = 0..Pi) Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}]=Divide[(I)^(- n),Pi]*Integrate[Exp[I*z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}] Failure Failure Skip Error
10.9.E3 ${\displaystyle{\displaystyle Y_{0}\left(z\right)=\frac{4}{\pi^{2}}\int_{0}^{% \frac{1}{2}\pi}\cos\left(z\cos\theta\right)\left(\gamma+\ln\left(2z{\sin^{2}}% \theta\right)\right)\mathrm{d}\theta}}$ BesselY(0, z)=(4)/((Pi)^(2))*int(cos(z*cos(theta))*(gamma + ln(2*z*(sin(theta))^(2))), theta = 0..(1)/(2)*Pi) BesselY[0, z]=Divide[4,(Pi)^(2)]*Integrate[Cos[z*Cos[\[Theta]]]*(EulerGamma + Log[2*z*(Sin[\[Theta]])^(2)]), {\[Theta], 0, Divide[1,2]*Pi}] Failure Failure Skip Error
10.9.E4 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% }{\pi^{\frac{1}{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\pi}\cos\left% (z\cos\theta\right)(\sin\theta)^{2\nu}\mathrm{d}\theta}}$ BesselJ(nu, z)=(((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) BesselJ[\[Nu], z]=Divide[(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}] Failure Failure Skip Skip
10.9.E4 ${\displaystyle{\displaystyle\frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}% \Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{\pi}\cos\left(z\cos\theta\right)% (\sin\theta)^{2\nu}\mathrm{d}\theta=\frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1% }{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2% }}\cos\left(zt\right)\mathrm{d}t}}$ (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi)=(2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* cos(z*t), t = 0..1) Divide[(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}]=Divide[2*(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Cos[z*t], {t, 0, 1}] Failure Failure Skip Successful
10.9.E5 ${\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{2(\tfrac{1}{2}z)^{\nu% }}{\pi^{\frac{1}{2}}\Gamma\left(\nu+\tfrac{1}{2}\right)}\left(\int_{0}^{1}(1-t% ^{2})^{\nu-\frac{1}{2}}\sin\left(zt\right)\mathrm{d}t-\int_{0}^{\infty}e^{-zt}% (1+t^{2})^{\nu-\frac{1}{2}}\mathrm{d}t\right)}}$ BesselY(nu, z)=(2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*(int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)- int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)) BesselY[\[Nu], z]=Divide[2*(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*(Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}]- Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}]) Successful Failure - Error
10.9.E6 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \cos\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta-\frac{\sin\left(\nu\pi% \right)}{\pi}\int_{0}^{\infty}e^{-z\sinh t-\nu t}\mathrm{d}t}}$ BesselJ(nu, z)=(1)/(Pi)*int(cos(z*sin(theta)- nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*sinh(t)- nu*t), t = 0..infinity) BesselJ[\[Nu], z]=Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Sinh[t]- \[Nu]*t], {t, 0, Infinity}] Failure Failure Skip Error
10.9.E7 ${\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{1}{\pi}\int_{0}^{\pi}% \sin\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta-\frac{1}{\pi}\int_{0}^{% \infty}\left(e^{\nu t}+e^{-\nu t}\cos\left(\nu\pi\right)\right)e^{-z\sinh t}% \mathrm{d}t}}$ BesselY(nu, z)=(1)/(Pi)*int(sin(z*sin(theta)- nu*theta), theta = 0..Pi)-(1)/(Pi)*int((exp(nu*t)+ exp(- nu*t)*cos(nu*Pi))* exp(- z*sinh(t)), t = 0..infinity) BesselY[\[Nu], z]=Divide[1,Pi]*Integrate[Sin[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}]-Divide[1,Pi]*Integrate[(Exp[\[Nu]*t]+ Exp[- \[Nu]*t]*Cos[\[Nu]*Pi])* Exp[- z*Sinh[t]], {t, 0, Infinity}] Failure Failure Skip Error
10.9#Ex1 ${\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{2}{\pi}\int_{0}^{% \infty}\sin\left(x\cosh t-\tfrac{1}{2}\nu\pi\right)\cosh\left(\nu t\right)% \mathrm{d}t}}$ BesselJ(nu, x)=(2)/(Pi)*int(sin(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity) BesselJ[\[Nu], x]=Divide[2,Pi]*Integrate[Sin[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}] Failure Failure Skip Error
10.9#Ex2 ${\displaystyle{\displaystyle Y_{\nu}\left(x\right)=-\frac{2}{\pi}\int_{0}^{% \infty}\cos\left(x\cosh t-\tfrac{1}{2}\nu\pi\right)\cosh\left(\nu t\right)% \mathrm{d}t}}$ BesselY(nu, x)= -(2)/(Pi)*int(cos(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity) BesselY[\[Nu], x]= -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}] Failure Failure Skip Error
10.9#Ex3 ${\displaystyle{\displaystyle J_{0}\left(x\right)=\frac{2}{\pi}\int_{0}^{\infty% }\sin\left(x\cosh t\right)\mathrm{d}t}}$ BesselJ(0, x)=(2)/(Pi)*int(sin(x*cosh(t)), t = 0..infinity) BesselJ[0, x]=Divide[2,Pi]*Integrate[Sin[x*Cosh[t]], {t, 0, Infinity}] Failure Failure Skip Error
10.9#Ex4 ${\displaystyle{\displaystyle Y_{0}\left(x\right)=-\frac{2}{\pi}\int_{0}^{% \infty}\cos\left(x\cosh t\right)\mathrm{d}t}}$ BesselY(0, x)= -(2)/(Pi)*int(cos(x*cosh(t)), t = 0..infinity) BesselY[0, x]= -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]], {t, 0, Infinity}] Failure Failure Skip Error
10.9.E10 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{e^{-\frac{1}{2% }\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{iz\cosh t-\nu t}\mathrm{d}t}}$ HankelH1(nu, z)=(exp(-(1)/(2)*nu*Pi*I))/(Pi*I)*int(exp(I*z*cosh(t)- nu*t), t = - infinity..infinity) HankelH1[\[Nu], z]=Divide[Exp[-Divide[1,2]*\[Nu]*Pi*I],Pi*I]*Integrate[Exp[I*z*Cosh[t]- \[Nu]*t], {t, - Infinity, Infinity}] Failure Failure Skip Error
10.9.E11 ${\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=-\frac{e^{\frac{1}{2% }\nu\pi i}}{\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh t-\nu t}\mathrm{d}t}}$ HankelH2(nu, z)= -(exp((1)/(2)*nu*Pi*I))/(Pi*I)*int(exp(- I*z*cosh(t)- nu*t), t = - infinity..infinity) HankelH2[\[Nu], z]= -Divide[Exp[Divide[1,2]*\[Nu]*Pi*I],Pi*I]*Integrate[Exp[- I*z*Cosh[t]- \[Nu]*t], {t, - Infinity, Infinity}] Failure Failure Skip Error
10.9#Ex5 ${\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{2(\tfrac{1}{2}x)^{-% \nu}}{\pi^{\frac{1}{2}}\Gamma\left(\tfrac{1}{2}-\nu\right)}\int_{1}^{\infty}% \frac{\sin\left(xt\right)\mathrm{d}t}{(t^{2}-1)^{\nu+\frac{1}{2}}}}}$ BesselJ(nu, x)=(2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((sin(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity) BesselJ[\[Nu], x]=Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Sin[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}] Successful Failure - Error
10.9#Ex6 ${\displaystyle{\displaystyle Y_{\nu}\left(x\right)=-\frac{2(\tfrac{1}{2}x)^{-% \nu}}{\pi^{\frac{1}{2}}\Gamma\left(\tfrac{1}{2}-\nu\right)}\int_{1}^{\infty}% \frac{\cos\left(xt\right)\mathrm{d}t}{(t^{2}-1)^{\nu+\frac{1}{2}}}}}$ BesselY(nu, x)= -(2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((cos(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity) BesselY[\[Nu], x]= -Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Cos[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}] Failure Failure Skip Error
10.9.E13 ${\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}J_{\nu}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi}\int_{0}^% {\pi}e^{\zeta\cos\theta}\cos\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta% -\frac{\sin\left(\nu\pi\right)}{\pi}\int_{0}^{\infty}e^{-\zeta\cosh t-z\sinh t% -\nu t}\mathrm{d}t}}$ ((z + zeta)/(z - zeta))^((1)/(2)*nu)* BesselJ(nu, ((z)^(2)- (zeta)^(2))^((1)/(2)))=(1)/(Pi)*int(exp(zeta*cos(theta))*cos(z*sin(theta)- nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- zeta*cosh(t)- z*sinh(t)- nu*t), t = 0..infinity) (Divide[z + \[zeta],z - \[zeta]])^(Divide[1,2]*\[Nu])* BesselJ[\[Nu], ((z)^(2)- (\[zeta])^(2))^(Divide[1,2])]=Divide[1,Pi]*Integrate[Exp[\[zeta]*Cos[\[Theta]]]*Cos[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- \[zeta]*Cosh[t]- z*Sinh[t]- \[Nu]*t], {t, 0, Infinity}] Failure Failure Skip Error
10.9.E14 ${\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}Y_{\nu}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi}\int_{0}^% {\pi}e^{\zeta\cos\theta}\sin\left(z\sin\theta-\nu\theta\right)\mathrm{d}\theta% -\frac{1}{\pi}\int_{0}^{\infty}\left(e^{\nu t+\zeta\cosh t}+e^{-\nu t-\zeta% \cosh t}\cos\left(\nu\pi\right)\right)\*e^{-z\sinh t}\mathrm{d}t}}$ ((z + zeta)/(z - zeta))^((1)/(2)*nu)* BesselY(nu, ((z)^(2)- (zeta)^(2))^((1)/(2)))=(1)/(Pi)*int(exp(zeta*cos(theta))*sin(z*sin(theta)- nu*theta), theta = 0..Pi)-(1)/(Pi)*int((exp(nu*t + zeta*cosh(t))+ exp(- nu*t - zeta*cosh(t))*cos(nu*Pi))* exp(- z*sinh(t)), t = 0..infinity) (Divide[z + \[zeta],z - \[zeta]])^(Divide[1,2]*\[Nu])* BesselY[\[Nu], ((z)^(2)- (\[zeta])^(2))^(Divide[1,2])]=Divide[1,Pi]*Integrate[Exp[\[zeta]*Cos[\[Theta]]]*Sin[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}]-Divide[1,Pi]*Integrate[(Exp[\[Nu]*t + \[zeta]*Cosh[t]]+ Exp[- \[Nu]*t - \[zeta]*Cosh[t]]*Cos[\[Nu]*Pi])* Exp[- z*Sinh[t]], {t, 0, Infinity}] Failure Failure Skip Error
10.9.E15 ${\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}{H^{(1)}_{\nu}}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=\frac{1}{\pi i% }e^{-\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{iz\cosh t+i\zeta\sinh t-\nu t% }\mathrm{d}t}}$ ((z + zeta)/(z - zeta))^((1)/(2)*nu)* HankelH1(nu, ((z)^(2)- (zeta)^(2))^((1)/(2)))=(1)/(Pi*I)*exp(-(1)/(2)*nu*Pi*I)*int(exp(I*z*cosh(t)+ I*zeta*sinh(t)- nu*t), t = - infinity..infinity) (Divide[z + \[zeta],z - \[zeta]])^(Divide[1,2]*\[Nu])* HankelH1[\[Nu], ((z)^(2)- (\[zeta])^(2))^(Divide[1,2])]=Divide[1,Pi*I]*Exp[-Divide[1,2]*\[Nu]*Pi*I]*Integrate[Exp[I*z*Cosh[t]+ I*\[zeta]*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity}] Failure Failure Skip Error
10.9.E16 ${\displaystyle{\displaystyle\left(\frac{z+\zeta}{z-\zeta}\right)^{\frac{1}{2}% \nu}{H^{(2)}_{\nu}}\left((z^{2}-\zeta^{2})^{\frac{1}{2}}\right)=-\frac{1}{\pi i% }e^{\frac{1}{2}\nu\pi i}\int_{-\infty}^{\infty}e^{-iz\cosh t-i\zeta\sinh t-\nu t% }\mathrm{d}t}}$ ((z + zeta)/(z - zeta))^((1)/(2)*nu)* HankelH2(nu, ((z)^(2)- (zeta)^(2))^((1)/(2)))= -(1)/(Pi*I)*exp((1)/(2)*nu*Pi*I)*int(exp(- I*z*cosh(t)- I*zeta*sinh(t)- nu*t), t = - infinity..infinity) (Divide[z + \[zeta],z - \[zeta]])^(Divide[1,2]*\[Nu])* HankelH2[\[Nu], ((z)^(2)- (\[zeta])^(2))^(Divide[1,2])]= -Divide[1,Pi*I]*Exp[Divide[1,2]*\[Nu]*Pi*I]*Integrate[Exp[- I*z*Cosh[t]- I*\[zeta]*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity}] Failure Failure Skip Error
10.9.E17 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2\pi i}\int_{% \infty-\pi i}^{\infty+\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}$ BesselJ(nu, z)=(1)/(2*Pi*I)*int(exp(z*sinh(t)- nu*t), t = infinity - Pi*I..infinity + Pi*I) BesselJ[\[Nu], z]=Divide[1,2*Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, Infinity - Pi*I, Infinity + Pi*I}] Failure Failure Skip
Fail
Complex[0.342503927390088, -0.08973210023585859] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.3263028372306598, 4.480608248698951] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-26.41355287980499, 14.935276359740396] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2663767645899945, 0.9702347233898156] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.3263028372306598, -4.480608248698951] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.342503927390088, 0.08973210023585859] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2663767645899945, -0.9702347233898156] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-26.41355287980499, -14.935276359740396] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.39963521704093186, 30.09969734416124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.046644891088354845, -0.029068706250418734] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.25204630776727216, 0.2526884311965666] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[85.54137130367369, -0.13339080538141346] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.046644891088354845, 0.029068706250418734] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.39963521704093186, -30.09969734416124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[85.54137130367369, 0.13339080538141346] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.25204630776727216, -0.2526884311965666] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
10.9#Ex7 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{1}{\pi i}\int_% {-\infty}^{\infty+\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}$ HankelH1(nu, z)=(1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity + Pi*I) HankelH1[\[Nu], z]=Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity + Pi*I}] Failure Failure Skip Error
10.9#Ex8 ${\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=-\frac{1}{\pi i}\int% _{-\infty}^{\infty-\pi i}e^{z\sinh t-\nu t}\mathrm{d}t}}$ HankelH2(nu, z)= -(1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity - Pi*I) HankelH2[\[Nu], z]= -Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity - Pi*I}] Failure Failure Skip Error
10.9.E19 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}% }{2\pi i}\int_{-\infty}^{(0+)}\exp\left(t-\frac{z^{2}}{4t}\right)\frac{\mathrm% {d}t}{t^{\nu+1}}}}$ BesselJ(nu, z)=(((1)/(2)*z)^(nu))/(2*Pi*I)*int(exp(t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = - infinity..(0 +)) BesselJ[\[Nu], z]=Divide[(Divide[1,2]*z)^(\[Nu]),2*Pi*I]*Integrate[Exp[t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, - Infinity, (0 +)}] Error Failure - Error
10.9.E20 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{\Gamma\left(\frac{1}{% 2}-\nu\right)(\frac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{0}^{(1+)}\cos\left% (zt\right)(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}$ BesselJ(nu, z)=(GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(cos(z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 0..(1 +)) BesselJ[\[Nu], z]=Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[3,2])* I]*Integrate[Cos[z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 0, (1 +)}] Error Failure - Error
10.9#Ex9 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=\frac{\Gamma\left(% \tfrac{1}{2}-\nu\right)(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1+i% \infty}^{(1+)}e^{izt}(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}$ HankelH1(nu, z)=(GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 + I*infinity..(1 +)) HankelH1[\[Nu], z]=Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[3,2])* I]*Integrate[Exp[I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 + I*Infinity, (1 +)}] Error Failure - Error
10.9#Ex10 ${\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=\frac{\Gamma\left(% \tfrac{1}{2}-\nu\right)(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1-i% \infty}^{(1+)}e^{-izt}(t^{2}-1)^{\nu-\frac{1}{2}}\mathrm{d}t}}$ HankelH2(nu, z)=(GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(- I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 - I*infinity..(1 +)) HankelH2[\[Nu], z]=Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^(\[Nu]),(Pi)^(Divide[3,2])* I]*Integrate[Exp[- I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 - I*Infinity, (1 +)}] Error Failure - Error
10.9.E22 ${\displaystyle{\displaystyle J_{\nu}\left(x\right)=\frac{1}{2\pi i}\int_{-i% \infty}^{i\infty}\frac{\Gamma\left(-t\right)(\tfrac{1}{2}x)^{\nu+2t}}{\Gamma% \left(\nu+t+1\right)}\mathrm{d}t}}$ BesselJ(nu, x)=(1)/(2*Pi*I)*int((GAMMA(- t)*((1)/(2)*x)^(nu + 2*t))/(GAMMA(nu + t + 1)), t = - I*infinity..I*infinity) BesselJ[\[Nu], x]=Divide[1,2*Pi*I]*Integrate[Divide[Gamma[- t]*(Divide[1,2]*x)^(\[Nu]+ 2*t),Gamma[\[Nu]+ t + 1]], {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
10.9.E23 ${\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2\pi i}\int_{-% \infty-ic}^{-\infty+ic}\frac{\Gamma\left(t\right)}{\Gamma\left(\nu-t+1\right)}% (\tfrac{1}{2}z)^{\nu-2t}\mathrm{d}t}}$ BesselJ(nu, z)=(1)/(2*Pi*I)*int((GAMMA(t))/(GAMMA(nu - t + 1))*((1)/(2)*z)^(nu - 2*t), t = - infinity - I*c..- infinity + I*c) BesselJ[\[Nu], z]=Divide[1,2*Pi*I]*Integrate[Divide[Gamma[t],Gamma[\[Nu]- t + 1]]*(Divide[1,2]*z)^(\[Nu]- 2*t), {t, - Infinity - I*c, - Infinity + I*c}] Failure Failure Skip
Fail
Complex[0.342503927390088, -0.08973210023585859] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.3263028372306598, 4.480608248698951] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-26.41355287980499, 14.935276359740396] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2663767645899945, 0.9702347233898156] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.3263028372306598, -4.480608248698951] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.342503927390088, 0.08973210023585859] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2663767645899945, -0.9702347233898156] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-26.41355287980499, -14.935276359740396] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.39963521704093186, 30.09969734416124] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.046644891088354845, -0.029068706250418734] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.25204630776727216, 0.2526884311965666] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[85.54137130367369, -0.13339080538141346] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.046644891088354845, 0.029068706250418734] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.39963521704093186, -30.09969734416124] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[85.54137130367369, 0.13339080538141346] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.25204630776727216, -0.2526884311965666] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
10.9.E24 ${\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=-\frac{e^{-\frac{1}{% 2}\nu\pi i}}{2\pi^{2}}\*\int_{c-i\infty}^{c+i\infty}\Gamma\left(t\right)\Gamma% \left(t-\nu\right)(-\tfrac{1}{2}iz)^{\nu-2t}\mathrm{d}t}}$ HankelH1(nu, z)= -(exp(-(1)/(2)*nu*Pi*I))/(2*(Pi)^(2))* int(GAMMA(t)*GAMMA(t - nu)*(-(1)/(2)*I*z)^(nu - 2*t), t = c - I*infinity..c + I*infinity) HankelH1[\[Nu], z]= -Divide[Exp[-Divide[1,2]*\[Nu]*Pi*I],2*(Pi)^(2)]* Integrate[Gamma[t]*Gamma[t - \[Nu]]*(-Divide[1,2]*I*z)^(\[Nu]- 2*t), {t, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
10.9.E25