lim q → 1 1 - q α 1 - q = α subscript → 𝑞 1 1 superscript 𝑞 𝛼 1 𝑞 𝛼 {\displaystyle{\displaystyle{\displaystyle\lim\limits_{q\rightarrow 1}\frac{1-% q^{\alpha}}{1-q}=\alpha}}} {\displaystyle \lim\limits_{q\rightarrow 1}\frac{1-q^{\alpha}}{1-q}=\alpha } [ α ] := 1 - q α 1 - q assign delimited-[] 𝛼 1 superscript 𝑞 𝛼 1 𝑞 {\displaystyle{\displaystyle{\displaystyle[\alpha]:=\frac{1-q^{\alpha}}{1-q}}}} {\displaystyle [\alpha]:=\frac{1-q^{\alpha}}{1-q} } [ 0 ] = 0 , [ n ] = 1 - q n 1 - q = ∑ k = 0 n - 1 q k formulae-sequence delimited-[] 0 0 delimited-[] 𝑛 1 superscript 𝑞 𝑛 1 𝑞 superscript subscript 𝑘 0 𝑛 1 superscript 𝑞 𝑘 {\displaystyle{\displaystyle{\displaystyle[0]=0,\quad[n]=\frac{1-q^{n}}{1-q}=% \sum_{k=0}^{n-1}q^{k}}}} {\displaystyle [0]=0,\quad [n]=\frac{1-q^n}{1-q}=\sum_{k=0}^{n-1}q^k }
\qPochhammer a q 0 := 1 and \qPochhammer a q k := ∏ n = 1 k ( 1 - a q n - 1 ) , k = 1 , 2 , 3 , … formulae-sequence assign \qPochhammer 𝑎 𝑞 0 1 and formulae-sequence assign \qPochhammer 𝑎 𝑞 𝑘 superscript subscript product 𝑛 1 𝑘 1 𝑎 superscript 𝑞 𝑛 1 𝑘 1 2 3 … {\displaystyle{\displaystyle{\displaystyle{}\qPochhammer{a}{q}{0}:=1\quad% \textrm{and}\quad\qPochhammer{a}{q}{k}:=\prod_{n=1}^{k}(1-aq^{n-1}),\quad k=1,% 2,3,\ldots}}} {\displaystyle \index{q-Shifted factorial@$q$-Shifted factorial} \qPochhammer{a}{q}{0}:=1\quad\textrm{and}\quad \qPochhammer{a}{q}{k}:=\prod_{n=1}^k(1-aq^{n-1}),\quad k=1,2,3,\ldots } lim q → 1 \qPochhammer q α q k ( 1 - q ) k = \pochhammer α k subscript → 𝑞 1 \qPochhammer superscript 𝑞 𝛼 𝑞 𝑘 superscript 1 𝑞 𝑘 \pochhammer 𝛼 𝑘 {\displaystyle{\displaystyle{\displaystyle\lim\limits_{q\rightarrow 1}\frac{% \qPochhammer{q^{\alpha}}{q}{k}}{(1-q)^{k}}=\pochhammer{\alpha}{k}}}} {\displaystyle \lim\limits_{q\rightarrow 1}\frac{\qPochhammer{q^{\alpha}}{q}{k}}{(1-q)^k}=\pochhammer{\alpha}{k} } \qPochhammer a q - k := 1 ∏ n = 1 k ( 1 - a q - n ) , a ≠ q , q 2 , q 3 , … , q k formulae-sequence assign \qPochhammer 𝑎 𝑞 𝑘 1 superscript subscript product 𝑛 1 𝑘 1 𝑎 superscript 𝑞 𝑛 𝑎 𝑞 superscript 𝑞 2 superscript 𝑞 3 … superscript 𝑞 𝑘 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{-k}:=\frac{1}{% \displaystyle\prod_{n=1}^{k}(1-aq^{-n})},\quad a\neq q,q^{2},q^{3},\ldots,q^{k% }}}} {\displaystyle \qPochhammer{a}{q}{-k}:=\frac{1}{\displaystyle\prod_{n=1}^{k}(1-aq^{-n})},\quad a\neq q,q^2,q^3,\ldots,q^k }
\qPochhammer a q - n = 1 \qPochhammer a q - n q n = ( - q a - 1 ) n \qPochhammer q a - 1 q n q \binomial n 2 \qPochhammer 𝑎 𝑞 𝑛 1 \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑛 superscript 𝑞 superscript 𝑎 1 𝑛 \qPochhammer 𝑞 superscript 𝑎 1 𝑞 𝑛 superscript 𝑞 \binomial 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{-n}=\frac{1}{% \qPochhammer{aq^{-n}}{q}{n}}=\frac{(-qa^{-1})^{n}}{\qPochhammer{qa^{-1}}{q}{n}% }q^{\binomial{n}{2}}}}} {\displaystyle \qPochhammer{a}{q}{-n}=\frac{1}{\qPochhammer{aq^{-n}}{q}{n}}=\frac{(-qa^{-1})^n}{\qPochhammer{qa^{-1}}{q}{n}} q^{\binomial{n}{2}} }
\qPochhammer a q - 1 n = \qPochhammer a - 1 q n ( - a ) n q - \binomial n 2 \qPochhammer 𝑎 superscript 𝑞 1 𝑛 \qPochhammer superscript 𝑎 1 𝑞 𝑛 superscript 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q^{-1}}{n}=% \qPochhammer{a^{-1}}{q}{n}(-a)^{n}q^{-\binomial{n}{2}}}}} {\displaystyle \qPochhammer{a}{q^{-1}}{n}=\qPochhammer{a^{-1}}{q}{n}(-a)^nq^{-\binomial{n}{2}} }
\qPochhammer a q λ = \qPochhammer a q ∞ \qPochhammer a q λ q ∞ \qPochhammer 𝑎 𝑞 𝜆 \qPochhammer 𝑎 𝑞 \qPochhammer 𝑎 superscript 𝑞 𝜆 𝑞 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{\lambda}=\frac{% \qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{\lambda}}{q}{\infty}}}}} {\displaystyle \qPochhammer{a}{q}{\lambda}=\frac{\qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{\lambda}}{q}{\infty}} }
\qPochhammer a q n + k = \qPochhammer a q n \qPochhammer a q n q k \qPochhammer 𝑎 𝑞 𝑛 𝑘 \qPochhammer 𝑎 𝑞 𝑛 \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑘 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{n+k}=\qPochhammer% {a}{q}{n}\qPochhammer{aq^{n}}{q}{k}}}} {\displaystyle \qPochhammer{a}{q}{n+k}=\qPochhammer{a}{q}{n}\qPochhammer{aq^n}{q}{k} }
\qPochhammer a q n q k \qPochhammer a q k q n = \qPochhammer a q k \qPochhammer a q n \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑘 \qPochhammer 𝑎 superscript 𝑞 𝑘 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑘 \qPochhammer 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{aq^{n}}{q}{k}}{% \qPochhammer{aq^{k}}{q}{n}}=\frac{\qPochhammer{a}{q}{k}}{\qPochhammer{a}{q}{n}% }}}} {\displaystyle \frac{\qPochhammer{aq^n}{q}{k}}{\qPochhammer{aq^k}{q}{n}}=\frac{\qPochhammer{a}{q}{k}}{\qPochhammer{a}{q}{n}} }
\qPochhammer a q k q n - k = \qPochhammer a q n \qPochhammer a q k \qPochhammer 𝑎 superscript 𝑞 𝑘 𝑞 𝑛 𝑘 \qPochhammer 𝑎 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑘 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{k}}{q}{n-k}=\frac{% \qPochhammer{a}{q}{n}}{\qPochhammer{a}{q}{k}}}}} {\displaystyle \qPochhammer{aq^k}{q}{n-k}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{a}{q}{k}} }
0 < | q | < 1 0 𝑞 1 {\displaystyle{\displaystyle{\displaystyle 0<|q|<1}}} & a ≠ 0 𝑎 0 {\displaystyle{\displaystyle{\displaystyle a\neq 0}}} &
\qPochhammer a q - n q n \qPochhammer b q - n q n = \qPochhammer a - 1 q q n \qPochhammer b - 1 q q n ( a b ) n , a ≠ 0 formulae-sequence \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑛 \qPochhammer 𝑏 superscript 𝑞 𝑛 𝑞 𝑛 \qPochhammer superscript 𝑎 1 𝑞 𝑞 𝑛 \qPochhammer superscript 𝑏 1 𝑞 𝑞 𝑛 superscript 𝑎 𝑏 𝑛 𝑎 0 {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{aq^{-n}}{q}{n}}{% \qPochhammer{bq^{-n}}{q}{n}}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{b% ^{-1}q}{q}{n}}\left(\frac{a}{b}\right)^{n},\quad a\neq 0}}} {\displaystyle \frac{\qPochhammer{aq^{-n}}{q}{n}}{\qPochhammer{bq^{-n}}{q}{n}}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{b^{-1}q}{q}{n}} \left(\frac{a}{b}\right)^n,\quad a\neq 0 }
\qPochhammer a q n - k \qPochhammer b q n - k = \qPochhammer a q n \qPochhammer b q n \qPochhammer b - 1 q 1 - n q k \qPochhammer a - 1 q 1 - n q k ( b a ) k \qPochhammer 𝑎 𝑞 𝑛 𝑘 \qPochhammer 𝑏 𝑞 𝑛 𝑘 \qPochhammer 𝑎 𝑞 𝑛 \qPochhammer 𝑏 𝑞 𝑛 \qPochhammer superscript 𝑏 1 superscript 𝑞 1 𝑛 𝑞 𝑘 \qPochhammer superscript 𝑎 1 superscript 𝑞 1 𝑛 𝑞 𝑘 superscript 𝑏 𝑎 𝑘 {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{a}{q}{n-k}}{% \qPochhammer{b}{q}{n-k}}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}}% \frac{\qPochhammer{b^{-1}q^{1-n}}{q}{k}}{\qPochhammer{a^{-1}q^{1-n}}{q}{k}}% \left(\frac{b}{a}\right)^{k}{}}}} {\displaystyle \frac{\qPochhammer{a}{q}{n-k}}{\qPochhammer{b}{q}{n-k}}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}} \frac{\qPochhammer{b^{-1}q^{1-n}}{q}{k}}{\qPochhammer{a^{-1}q^{1-n}}{q}{k}}\left(\frac{b}{a}\right)^k {} }
b ≠ 0 𝑏 0 {\displaystyle{\displaystyle{\displaystyle b\neq 0}}} & k = 0 , 1 , 2 , … , n 𝑘 0 1 2 … 𝑛 {\displaystyle{\displaystyle{\displaystyle k=0,1,2,\ldots,n}}} & 0 < | q | < 1 0 𝑞 1 {\displaystyle{\displaystyle{\displaystyle 0<|q|<1}}} & a ≠ 0 𝑎 0 {\displaystyle{\displaystyle{\displaystyle a\neq 0}}} &
\qPochhammer a q n = \qPochhammer a q ∞ \qPochhammer a q n q ∞ = \qPochhammer a - 1 q 1 - n q n ( - a ) n q \binomial n 2 \qPochhammer 𝑎 𝑞 𝑛 \qPochhammer 𝑎 𝑞 \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 \qPochhammer superscript 𝑎 1 superscript 𝑞 1 𝑛 𝑞 𝑛 superscript 𝑎 𝑛 superscript 𝑞 \binomial 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{n}=\frac{% \qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{n}}{q}{\infty}}=\qPochhammer{a^{-% 1}q^{1-n}}{q}{n}(-a)^{n}q^{\binomial{n}{2}}}}} &
\qPochhammer q - n q k = \qPochhammer q q n \qPochhammer q q n - k ( - 1 ) k q \binomial k 2 - n k \qPochhammer superscript 𝑞 𝑛 𝑞 𝑘 \qPochhammer 𝑞 𝑞 𝑛 \qPochhammer 𝑞 𝑞 𝑛 𝑘 superscript 1 𝑘 superscript 𝑞 \binomial 𝑘 2 𝑛 𝑘 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{q^{-n}}{q}{k}=\frac{% \qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{n-k}}(-1)^{k}q^{\binomial{k}{2}-nk}}}} {\displaystyle \qPochhammer{q^{-n}}{q}{k}=\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{n-k}}(-1)^kq^{\binomial{k}{2}-nk} }
\qPochhammer a q - n q k = \qPochhammer a - 1 q q n \qPochhammer a - 1 q 1 - k q n \qPochhammer a q k q - n k \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑘 \qPochhammer superscript 𝑎 1 𝑞 𝑞 𝑛 \qPochhammer superscript 𝑎 1 superscript 𝑞 1 𝑘 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑘 superscript 𝑞 𝑛 𝑘 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{-n}}{q}{k}=\frac{% \qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q^{1-k}}{q}{n}}\qPochhammer{a}% {q}{k}q^{-nk}}}} {\displaystyle \qPochhammer{aq^{-n}}{q}{k}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q^{1-k}}{q}{n}}\qPochhammer{a}{q}{k}q^{-nk} }
\qPochhammer a q - n q n - k = \qPochhammer a - 1 q q n \qPochhammer a - 1 q q k ( - a q ) n - k q \binomial k 2 - \binomial n 2 \qPochhammer 𝑎 superscript 𝑞 𝑛 𝑞 𝑛 𝑘 \qPochhammer superscript 𝑎 1 𝑞 𝑞 𝑛 \qPochhammer superscript 𝑎 1 𝑞 𝑞 𝑘 superscript 𝑎 𝑞 𝑛 𝑘 superscript 𝑞 \binomial 𝑘 2 \binomial 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{-n}}{q}{n-k}=\frac{% \qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q}{q}{k}}\left(-\frac{a}{q}% \right)^{n-k}q^{\binomial{k}{2}-\binomial{n}{2}}{}}}} {\displaystyle \qPochhammer{aq^{-n}}{q}{n-k}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q}{q}{k}} \left(-\frac{a}{q}\right)^{n-k}q^{\binomial{k}{2}-\binomial{n}{2}} {} }
\qPochhammer a q 2 n = \qPochhammer a q 2 n \qPochhammer a q q 2 n \qPochhammer 𝑎 𝑞 2 𝑛 \qPochhammer 𝑎 superscript 𝑞 2 𝑛 \qPochhammer 𝑎 𝑞 superscript 𝑞 2 𝑛 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{2n}=\qPochhammer{% a}{q^{2}}{n}\qPochhammer{aq}{q^{2}}{n}}}} {\displaystyle \qPochhammer{a}{q}{2n}=\qPochhammer{a}{q^2}{n}\qPochhammer{aq}{q^2}{n} } \qPochhammer a 2 q 2 ∞ = \qPochhammer a q ∞ \qPochhammer - a q ∞ \qPochhammer superscript 𝑎 2 superscript 𝑞 2 \qPochhammer 𝑎 𝑞 \qPochhammer 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a^{2}}{q^{2}}{\infty}=% \qPochhammer{a}{q}{\infty}\qPochhammer{-a}{q}{\infty}}}} {\displaystyle \qPochhammer{a^2}{q^2}{\infty}=\qPochhammer{a}{q}{\infty}\qPochhammer{-a}{q}{\infty} }
1 - a 2 q 2 n 1 - a 2 = \qPochhammer a 2 q 2 q 2 n \qPochhammer a 2 q 2 n = \qPochhammer a q q n \qPochhammer - a q q n \qPochhammer a q n \qPochhammer - a q n 1 superscript 𝑎 2 superscript 𝑞 2 𝑛 1 superscript 𝑎 2 \qPochhammer superscript 𝑎 2 superscript 𝑞 2 superscript 𝑞 2 𝑛 \qPochhammer superscript 𝑎 2 superscript 𝑞 2 𝑛 \qPochhammer 𝑎 𝑞 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑛 \qPochhammer 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1-a^{2}q^{2n}}{1-a^{2}}=\frac{% \qPochhammer{a^{2}q^{2}}{q^{2}}{n}}{\qPochhammer{a^{2}}{q^{2}}{n}}=\frac{% \qPochhammer{aq}{q}{n}\qPochhammer{-aq}{q}{n}}{\qPochhammer{a}{q}{n}% \qPochhammer{-a}{q}{n}}}}} {\displaystyle \frac{1-a^2q^{2n}}{1-a^2}=\frac{\qPochhammer{a^2q^2}{q^2}{n}}{\qPochhammer{a^2}{q^2}{n}} =\frac{\qPochhammer{aq}{q}{n}\qPochhammer{-aq}{q}{n}}{\qPochhammer{a}{q}{n}\qPochhammer{-a}{q}{n}} }