Formula:KLS:14.04:13

From DRMF
Jump to navigation Jump to search


( 1 - q ) 2 D q [ w ~ ( x ; a q 1 2 , b q 1 2 c q 1 2 , d q 1 2 ; q ) D q y ( x ) ] + λ n w ~ ( x ; a , b , c , d ; q ) y ( x ) = 0 superscript 1 𝑞 2 subscript 𝐷 𝑞 delimited-[] ~ 𝑤 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 subscript 𝐷 𝑞 𝑦 𝑥 subscript 𝜆 𝑛 ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑦 𝑥 0 {\displaystyle{\displaystyle{\displaystyle(1-q)^{2}D_{q}\left[{\tilde{w}}(x;aq% ^{\frac{1}{2}},bq^{\frac{1}{2}}cq^{\frac{1}{2}},dq^{\frac{1}{2}};q)D_{q}y(x)% \right]{}+\lambda_{n}{\tilde{w}}(x;a,b,c,d;q)y(x)=0}}}

Substitution(s)

y ( x ) = p n ( x ; a , b , c , d ; q ) 𝑦 𝑥 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=p_{n}\!\left(x;a,b,c,d;q\right% )}}} &

λ n = 4 q - n + 1 ( 1 - q n ) ( 1 - a b c d q n - 1 ) subscript 𝜆 𝑛 4 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\lambda_{n}=4q^{-n+1}(1-q^{n})(1-% abcdq^{n-1})}}} &
w ~ ( x ; a , b , c , d ; q ) := w ( x ; a , b , c , d ; q ) 1 - x 2 assign ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q):=\frac{w(x;% a,b,c,d;q)}{\sqrt{1-x^{2}}}}}} &
w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
p n subscript 𝑝 𝑛 {\displaystyle{\displaystyle{\displaystyle p_{n}}}}  : continuous q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
( a ; q ) n subscript 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
e e {\displaystyle{\displaystyle{\displaystyle\mathrm{e}}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
i i {\displaystyle{\displaystyle{\displaystyle\mathrm{i}}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Π Π {\displaystyle{\displaystyle{\displaystyle\Pi}}}  : product : http://drmf.wmflabs.org/wiki/Definition:prod
cos cos {\displaystyle{\displaystyle{\displaystyle\mathrm{cos}}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.4 of KLS.

URL links

We ask users to provide relevant URL links in this space.