Continuous q-Hahn

From DRMF
Jump to navigation Jump to search

Continuous q-Hahn

Basic hypergeometric representation

( a e i ϕ ) n p n ( x ; a , b , c , d ; q ) ( a b e 2 i ϕ , a c , a d ; q ) n = \qHyperrphis 43 @ @ q - n , a b c d q n - 1 , a e i ( θ + 2 ϕ ) , a e - i θ a b e 2 i ϕ , a c , a d q q superscript 𝑎 imaginary-unit italic-ϕ 𝑛 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 2 imaginary-unit italic-ϕ 𝑎 𝑐 𝑎 𝑑 𝑞 𝑛 \qHyperrphis 43 @ @ superscript 𝑞 𝑛 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑎 imaginary-unit 𝜃 𝑎 𝑏 2 imaginary-unit italic-ϕ 𝑎 𝑐 𝑎 𝑑 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{(a{\mathrm{e}^{\mathrm{i}\phi}% })^{n}p_{n}\!\left(x;a,b,c,d;q\right)}{\left(ab{\mathrm{e}^{2\mathrm{i}\phi}},% ac,ad;q\right)_{n}}{}=\qHyperrphis{4}{3}@@{q^{-n},abcdq^{n-1},a{\mathrm{e}^{% \mathrm{i}(\theta+2\phi)}},a{\mathrm{e}^{-\mathrm{i}\theta}}}{ab{\mathrm{e}^{2% \mathrm{i}\phi}},ac,ad}{q}{q}}}} {\displaystyle \frac{(a\expe^{\iunit\phi})^n\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab\expe^{2\iunit\phi},ac,ad}{q}{n}} {}=\qHyperrphis{4}{3}@@{q^{-n},abcdq^{n-1},a\expe^{\iunit(\theta+2\phi)},a\expe^{-\iunit\theta}}{ab\expe^{2\iunit\phi},ac,ad}{q}{q} }

Substitution(s): x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Orthogonality relation(s)

1 4 π - π π w ( cos ( θ + ϕ ) ) p m ( cos ( θ + ϕ ) ; a , b , c , d ; q ) p n ( cos ( θ + ϕ ) ; a , b , c , d ; q ) 𝑑 θ = ( a b c d q n - 1 ; q ) n ( a b c d q 2 n ; q ) ( q n + 1 , a b q n e 2 i ϕ , a c q n , a d q n , b c q n , b d q n , c d q n e - 2 i ϕ ; q ) δ m , n 1 4 superscript subscript 𝑤 𝜃 italic-ϕ continuous-q-Hahn-polynomial-p 𝑚 𝜃 italic-ϕ 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝜃 italic-ϕ 𝑎 𝑏 𝑐 𝑑 𝑞 differential-d 𝜃 q-Pochhammer-symbol 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 𝑞 q-Pochhammer-symbol superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 𝑛 2 imaginary-unit italic-ϕ 𝑎 𝑐 superscript 𝑞 𝑛 𝑎 𝑑 superscript 𝑞 𝑛 𝑏 𝑐 superscript 𝑞 𝑛 𝑏 𝑑 superscript 𝑞 𝑛 𝑐 𝑑 superscript 𝑞 𝑛 2 imaginary-unit italic-ϕ 𝑞 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\frac{1}{4\pi}\int_{-\pi}^{\pi}w(% \cos\left(\theta+\phi\right))p_{m}\!\left(\cos\left(\theta+\phi\right);a,b,c,d% ;q\right)p_{n}\!\left(\cos\left(\theta+\phi\right);a,b,c,d;q\right)\,d\theta{}% =\frac{\left(abcdq^{n-1};q\right)_{n}\left(abcdq^{2n};q\right)_{\infty}}{\left% (q^{n+1},abq^{n}{\mathrm{e}^{2\mathrm{i}\phi}},acq^{n},adq^{n},bcq^{n},bdq^{n}% ,cdq^{n}{\mathrm{e}^{-2\mathrm{i}\phi}};q\right)_{\infty}}\,\delta_{m,n}}}} {\displaystyle \frac{1}{4\cpi}\int_{-\cpi}^{\cpi}w(\cos@{\theta+\phi}) \ctsqHahn{m}@{\cos@{\theta+\phi}}{a}{b}{c}{d}{q}\ctsqHahn{n}@{\cos@{\theta+\phi}}{a}{b}{c}{d}{q}\,d\theta {}=\frac{\qPochhammer{abcdq^{n-1}}{q}{n}\qPochhammer{abcdq^{2n}}{q}{\infty}} {\qPochhammer{q^{n+1},abq^n\expe^{2\iunit\phi},acq^n,adq^n,bcq^n,bdq^n,cdq^n\expe^{-2\iunit\phi}}{q}{\infty}}\,\Kronecker{m}{n} }

Substitution(s): w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &

h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Recurrence relation

2 x p ~ n ( x ) = A n p ~ n + 1 ( x ) + [ a e i ϕ + a - 1 e - i ϕ - ( A n + C n ) ] p ~ n ( x ) + C n p ~ n - 1 ( x ) 2 𝑥 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 subscript 𝐴 𝑛 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 delimited-[] 𝑎 imaginary-unit italic-ϕ superscript 𝑎 1 imaginary-unit italic-ϕ subscript 𝐴 𝑛 subscript 𝐶 𝑛 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 subscript 𝐶 𝑛 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle 2x{\tilde{p}}_{n}\!\left(x\right)=A% _{n}{\tilde{p}}_{n+1}\!\left(x\right)+\left[a{\mathrm{e}^{\mathrm{i}\phi}}+a^{% -1}{\mathrm{e}^{-\mathrm{i}\phi}}-\left(A_{n}+C_{n}\right)\right]{\tilde{p}}_{% n}\!\left(x\right)+C_{n}{\tilde{p}}_{n-1}\!\left(x\right)}}} {\displaystyle 2x\normctsqHahnptilde{n}@@{x}{a}{b}{c}{d}{q}=A_n\normctsqHahnptilde{n+1}@@{x}{a}{b}{c}{d}{q}+\left[a\expe^{\iunit\phi}+a^{-1}\expe^{-\iunit\phi}-\left(A_n+C_n\right)\right]\normctsqHahnptilde{n}@@{x}{a}{b}{c}{d}{q}+C_n\normctsqHahnptilde{n-1}@@{x}{a}{b}{c}{d}{q} }

Substitution(s): C n = a e i ϕ ( 1 - q n ) ( 1 - b c q n - 1 ) ( 1 - b d q n - 1 ) ( 1 - c d e - 2 i ϕ q n - 1 ) ( 1 - a b c d q 2 n - 2 ) ( 1 - a b c d q 2 n - 1 ) subscript 𝐶 𝑛 𝑎 imaginary-unit italic-ϕ 1 superscript 𝑞 𝑛 1 𝑏 𝑐 superscript 𝑞 𝑛 1 1 𝑏 𝑑 superscript 𝑞 𝑛 1 1 𝑐 𝑑 2 imaginary-unit italic-ϕ superscript 𝑞 𝑛 1 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 2 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=\frac{a{\mathrm{e}^{\mathrm{i% }\phi}}(1-q^{n})(1-bcq^{n-1})(1-bdq^{n-1})(1-cd{\mathrm{e}^{-2\mathrm{i}\phi}}% q^{n-1})}{(1-abcdq^{2n-2})(1-abcdq^{2n-1})}}}} &
A n = ( 1 - a b e 2 i ϕ q n ) ( 1 - a c q n ) ( 1 - a d q n ) ( 1 - a b c d q n - 1 ) a e i ϕ ( 1 - a b c d q 2 n - 1 ) ( 1 - a b c d q 2 n ) subscript 𝐴 𝑛 1 𝑎 𝑏 2 imaginary-unit italic-ϕ superscript 𝑞 𝑛 1 𝑎 𝑐 superscript 𝑞 𝑛 1 𝑎 𝑑 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 𝑎 imaginary-unit italic-ϕ 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 1 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 {\displaystyle{\displaystyle{\displaystyle A_{n}=\frac{(1-ab{\mathrm{e}^{2% \mathrm{i}\phi}}q^{n})(1-acq^{n})(1-adq^{n})(1-abcdq^{n-1})}{a{\mathrm{e}^{% \mathrm{i}\phi}}(1-abcdq^{2n-1})(1-abcdq^{2n})}}}}


p ~ n ( x ) := p ~ n ( x ; a , b , c , d ; q ) = ( a e i ϕ ) n p n ( x ; a , b , c , d ; q ) ( a b e 2 i ϕ , a c , a d ; q ) n assign continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑎 imaginary-unit italic-ϕ 𝑛 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 2 imaginary-unit italic-ϕ 𝑎 𝑐 𝑎 𝑑 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle{\tilde{p}}_{n}\!\left(x\right):={% \tilde{p}}_{n}\!\left(x;a,b,c,d;q\right)=\frac{(a{\mathrm{e}^{\mathrm{i}\phi}}% )^{n}p_{n}\!\left(x;a,b,c,d;q\right)}{\left(ab{\mathrm{e}^{2\mathrm{i}\phi}},% ac,ad;q\right)_{n}}}}} {\displaystyle \normctsqHahnptilde{n}@@{x}{a}{b}{c}{d}{q}:=\normctsqHahnptilde{n}@{x}{a}{b}{c}{d}{q}=\frac{(a\expe^{\iunit\phi})^n\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab\expe^{2\iunit\phi},ac,ad}{q}{n}} }

Monic recurrence relation

x p ^ n ( x ) = p ^ n + 1 ( x ) + 1 2 [ a e i ϕ + a - 1 e - i ϕ - ( A n + C n ) ] p ^ n ( x ) + 1 4 A n - 1 C n p ^ n - 1 ( x ) 𝑥 continuous-q-Hahn-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 2 delimited-[] 𝑎 imaginary-unit italic-ϕ superscript 𝑎 1 imaginary-unit italic-ϕ subscript 𝐴 𝑛 subscript 𝐶 𝑛 continuous-q-Hahn-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 4 subscript 𝐴 𝑛 1 subscript 𝐶 𝑛 continuous-q-Hahn-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{p}}_{n}\!\left(x\right)=% {\widehat{p}}_{n+1}\!\left(x\right)+\frac{1}{2}\left[a{\mathrm{e}^{\mathrm{i}% \phi}}+a^{-1}{\mathrm{e}^{-\mathrm{i}\phi}}-(A_{n}+C_{n})\right]{\widehat{p}}_% {n}\!\left(x\right){}+\frac{1}{4}A_{n-1}C_{n}{\widehat{p}}_{n-1}\!\left(x% \right)}}} {\displaystyle x\monicctsqHahn{n}@@{x}{a}{b}{c}{d}{q}=\monicctsqHahn{n+1}@@{x}{a}{b}{c}{d}{q}+\frac{1}{2}\left[a\expe^{\iunit\phi}+a^{-1}\expe^{-\iunit\phi}-(A_n+C_n)\right]\monicctsqHahn{n}@@{x}{a}{b}{c}{d}{q} {}+\frac{1}{4}A_{n-1}C_n\monicctsqHahn{n-1}@@{x}{a}{b}{c}{d}{q} }

Substitution(s): C n = a e i ϕ ( 1 - q n ) ( 1 - b c q n - 1 ) ( 1 - b d q n - 1 ) ( 1 - c d e - 2 i ϕ q n - 1 ) ( 1 - a b c d q 2 n - 2 ) ( 1 - a b c d q 2 n - 1 ) subscript 𝐶 𝑛 𝑎 imaginary-unit italic-ϕ 1 superscript 𝑞 𝑛 1 𝑏 𝑐 superscript 𝑞 𝑛 1 1 𝑏 𝑑 superscript 𝑞 𝑛 1 1 𝑐 𝑑 2 imaginary-unit italic-ϕ superscript 𝑞 𝑛 1 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 2 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=\frac{a{\mathrm{e}^{\mathrm{i% }\phi}}(1-q^{n})(1-bcq^{n-1})(1-bdq^{n-1})(1-cd{\mathrm{e}^{-2\mathrm{i}\phi}}% q^{n-1})}{(1-abcdq^{2n-2})(1-abcdq^{2n-1})}}}} &
A n = ( 1 - a b e 2 i ϕ q n ) ( 1 - a c q n ) ( 1 - a d q n ) ( 1 - a b c d q n - 1 ) a e i ϕ ( 1 - a b c d q 2 n - 1 ) ( 1 - a b c d q 2 n ) subscript 𝐴 𝑛 1 𝑎 𝑏 2 imaginary-unit italic-ϕ superscript 𝑞 𝑛 1 𝑎 𝑐 superscript 𝑞 𝑛 1 𝑎 𝑑 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 𝑎 imaginary-unit italic-ϕ 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 1 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 2 𝑛 {\displaystyle{\displaystyle{\displaystyle A_{n}=\frac{(1-ab{\mathrm{e}^{2% \mathrm{i}\phi}}q^{n})(1-acq^{n})(1-adq^{n})(1-abcdq^{n-1})}{a{\mathrm{e}^{% \mathrm{i}\phi}}(1-abcdq^{2n-1})(1-abcdq^{2n})}}}}


p n ( x ; a , b , c , d ; q ) = 2 n ( a b c d q n - 1 ; q ) n p ^ n ( x ) continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 2 𝑛 q-Pochhammer-symbol 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 𝑞 𝑛 continuous-q-Hahn-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle p_{n}\!\left(x;a,b,c,d;q\right)=2^{% n}\left(abcdq^{n-1};q\right)_{n}{\widehat{p}}_{n}\!\left(x\right)}}} {\displaystyle \ctsqHahn{n}@{x}{a}{b}{c}{d}{q}=2^n\qPochhammer{abcdq^{n-1}}{q}{n}\monicctsqHahn{n}@@{x}{a}{b}{c}{d}{q} }

q-Difference equation

( 1 - q ) 2 D q [ w ~ ( x ; a q 1 2 , b q 1 2 c q 1 2 , d q 1 2 ; q ) D q y ( x ) ] + λ n w ~ ( x ; a , b , c , d ; q ) y ( x ) = 0 superscript 1 𝑞 2 subscript 𝐷 𝑞 delimited-[] ~ 𝑤 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 subscript 𝐷 𝑞 𝑦 𝑥 subscript 𝜆 𝑛 ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑦 𝑥 0 {\displaystyle{\displaystyle{\displaystyle(1-q)^{2}D_{q}\left[{\tilde{w}}(x;aq% ^{\frac{1}{2}},bq^{\frac{1}{2}}cq^{\frac{1}{2}},dq^{\frac{1}{2}};q)D_{q}y(x)% \right]{}+\lambda_{n}{\tilde{w}}(x;a,b,c,d;q)y(x)=0}}} {\displaystyle (1-q)^2D_q\left[{\tilde w}(x;aq^{\frac{1}{2}},bq^{\frac{1}{2}} cq^{\frac{1}{2}},dq^{\frac{1}{2}};q)D_qy(x)\right] {}+\lambda_n{\tilde w}(x;a,b,c,d;q)y(x)=0 }

Substitution(s): y ( x ) = p n ( x ; a , b , c , d ; q ) 𝑦 𝑥 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=p_{n}\!\left(x;a,b,c,d;q\right% )}}} &

λ n = 4 q - n + 1 ( 1 - q n ) ( 1 - a b c d q n - 1 ) subscript 𝜆 𝑛 4 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\lambda_{n}=4q^{-n+1}(1-q^{n})(1-% abcdq^{n-1})}}} &
w ~ ( x ; a , b , c , d ; q ) := w ( x ; a , b , c , d ; q ) 1 - x 2 assign ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q):=\frac{w(x;% a,b,c,d;q)}{\sqrt{1-x^{2}}}}}} &
w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Forward shift operator

δ q p n ( x ; a , b , c , d ; q ) = - q - 1 2 n ( 1 - q n ) ( 1 - a b c d q n - 1 ) ( e i ( θ + ϕ ) - e - i ( θ + ϕ ) ) p n - 1 ( x ; a q 1 2 , b q 1 2 , c q 1 2 , d q 1 2 ; q ) subscript 𝛿 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 1 2 𝑛 1 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 imaginary-unit 𝜃 italic-ϕ imaginary-unit 𝜃 italic-ϕ continuous-q-Hahn-polynomial-p 𝑛 1 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 {\displaystyle{\displaystyle{\displaystyle\delta_{q}p_{n}\!\left(x;a,b,c,d;q% \right){}=-q^{-\frac{1}{2}n}(1-q^{n})(1-abcdq^{n-1})({\mathrm{e}^{\mathrm{i}(% \theta+\phi)}}-{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}}){}p_{n-1}\!\left(x;aq^{% \frac{1}{2}},bq^{\frac{1}{2}},cq^{\frac{1}{2}},dq^{\frac{1}{2}};q\right)}}} {\displaystyle \delta_q \ctsqHahn{n}@{x}{a}{b}{c}{d}{q} {}=-q^{-\frac{1}{2}n}(1-q^n)(1-abcdq^{n-1})(\expe^{\iunit(\theta+\phi)}-\expe^{-\iunit(\theta+\phi)}) {} \ctsqHahn{n-1}@{x}{aq^{\frac{1}{2}}}{bq^{\frac{1}{2}}}{cq^{\frac{1}{2}}}{dq^{\frac{1}{2}}}{q} }

Substitution(s): x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


D q p n ( x ; a , b , c , d ; q ) = 2 q - 1 2 ( n - 1 ) ( 1 - q n ) ( 1 - a b c d q n - 1 ) 1 - q p n - 1 ( x ; a q 1 2 , b q 1 2 , c q 1 2 , d q 1 2 ; q ) subscript 𝐷 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 2 superscript 𝑞 1 2 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 𝑛 1 1 𝑞 continuous-q-Hahn-polynomial-p 𝑛 1 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 {\displaystyle{\displaystyle{\displaystyle D_{q}p_{n}\!\left(x;a,b,c,d;q\right% )=2q^{-\frac{1}{2}(n-1)}\frac{(1-q^{n})(1-abcdq^{n-1})}{1-q}{}p_{n-1}\!\left(x% ;aq^{\frac{1}{2}},bq^{\frac{1}{2}},cq^{\frac{1}{2}},dq^{\frac{1}{2}};q\right)}}} {\displaystyle D_q \ctsqHahn{n}@{x}{a}{b}{c}{d}{q}=2q^{-\frac{1}{2}(n-1)}\frac{(1-q^n)(1-abcdq^{n-1})}{1-q} {} \ctsqHahn{n-1}@{x}{aq^{\frac{1}{2}}}{bq^{\frac{1}{2}}}{cq^{\frac{1}{2}}}{dq^{\frac{1}{2}}}{q} }

Backward shift operator

δ q [ w ~ ( x ; a , b , c , d ; q ) p n ( x ; a , b , c , d ; q ) ] = q - 1 2 ( n + 1 ) ( e i ( θ + ϕ ) - e - i ( θ + ϕ ) ) w ~ ( x ; a q - 1 2 , b q - 1 2 , c q - 1 2 , d q - 1 2 ; q ) p n + 1 ( x ; a q - 1 2 , b q - 1 2 , c q - 1 2 , d q - 1 2 ; q ) subscript 𝛿 𝑞 delimited-[] ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 1 2 𝑛 1 imaginary-unit 𝜃 italic-ϕ imaginary-unit 𝜃 italic-ϕ ~ 𝑤 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 continuous-q-Hahn-polynomial-p 𝑛 1 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 {\displaystyle{\displaystyle{\displaystyle\delta_{q}\left[{\tilde{w}}(x;a,b,c,% d;q)p_{n}\!\left(x;a,b,c,d;q\right)\right]{}=q^{-\frac{1}{2}(n+1)}({\mathrm{e}% ^{\mathrm{i}(\theta+\phi)}}-{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}}){\tilde{w}% }(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-\frac{1}{2}};q)% {}p_{n+1}\!\left(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-% \frac{1}{2}};q\right)}}} {\displaystyle \delta_q\left[{\tilde w}(x;a,b,c,d;q)\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}\right] {}=q^{-\frac{1}{2}(n+1)}(\expe^{\iunit(\theta+\phi)}-\expe^{-\iunit(\theta+\phi)}) {\tilde w}(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-\frac{1}{2}};q) {} \ctsqHahn{n+1}@{x}{aq^{-\frac{1}{2}}}{bq^{-\frac{1}{2}}}{cq^{-\frac{1}{2}}}{dq^{-\frac{1}{2}}}{q} }

Substitution(s): w ~ ( x ; a , b , c , d ; q ) := w ( x ; a , b , c , d ; q ) 1 - x 2 assign ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q):=\frac{w(x;% a,b,c,d;q)}{\sqrt{1-x^{2}}}}}} &

w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


D q [ w ~ ( x ; a , b , c , d ; q ) p n ( x ; a , b , c , d ; q ) ] = - 2 q - 1 2 n 1 - q w ~ ( x ; a q - 1 2 , b q - 1 2 , c q - 1 2 , d q - 1 2 ; q ) p n + 1 ( x ; a q - 1 2 , b q - 1 2 , c q - 1 2 , d q - 1 2 ; q ) subscript 𝐷 𝑞 delimited-[] ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 2 superscript 𝑞 1 2 𝑛 1 𝑞 ~ 𝑤 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 continuous-q-Hahn-polynomial-p 𝑛 1 𝑥 𝑎 superscript 𝑞 1 2 𝑏 superscript 𝑞 1 2 𝑐 superscript 𝑞 1 2 𝑑 superscript 𝑞 1 2 𝑞 {\displaystyle{\displaystyle{\displaystyle D_{q}\left[{\tilde{w}}(x;a,b,c,d;q)% p_{n}\!\left(x;a,b,c,d;q\right)\right]{}=-\frac{2q^{-\frac{1}{2}n}}{1-q}{% \tilde{w}}(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-\frac{% 1}{2}};q){}p_{n+1}\!\left(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{% 2}},dq^{-\frac{1}{2}};q\right)}}} {\displaystyle D_q\left[{\tilde w}(x;a,b,c,d;q)\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}\right] {}=-\frac{2q^{-\frac{1}{2}n}}{1-q}{\tilde w}(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-\frac{1}{2}};q) {} \ctsqHahn{n+1}@{x}{aq^{-\frac{1}{2}}}{bq^{-\frac{1}{2}}}{cq^{-\frac{1}{2}}}{dq^{-\frac{1}{2}}}{q} }

Substitution(s): w ~ ( x ; a , b , c , d ; q ) := w ( x ; a , b , c , d ; q ) 1 - x 2 assign ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q):=\frac{w(x;% a,b,c,d;q)}{\sqrt{1-x^{2}}}}}} &

w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Rodrigues-type formula

w ~ ( x ; a , b , c , d ; q ) p n ( x ; a , b , c , d ; q ) = ( q - 1 2 ) n q 1 4 n ( n - 1 ) ( D q ) n [ w ~ ( x ; a q 1 2 n , b q 1 2 n , c q 1 2 n , d q 1 2 n ; q ) ] ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 1 2 𝑛 superscript 𝑞 1 4 𝑛 𝑛 1 superscript subscript 𝐷 𝑞 𝑛 delimited-[] ~ 𝑤 𝑥 𝑎 superscript 𝑞 1 2 𝑛 𝑏 superscript 𝑞 1 2 𝑛 𝑐 superscript 𝑞 1 2 𝑛 𝑑 superscript 𝑞 1 2 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q)p_{n}\!\left% (x;a,b,c,d;q\right){}=\left(\frac{q-1}{2}\right)^{n}q^{\frac{1}{4}n(n-1)}\left% (D_{q}\right)^{n}\left[{\tilde{w}}(x;aq^{\frac{1}{2}n},bq^{\frac{1}{2}n},cq^{% \frac{1}{2}n},dq^{\frac{1}{2}n};q)\right]}}} {\displaystyle {\tilde w}(x;a,b,c,d;q)\ctsqHahn{n}@{x}{a}{b}{c}{d}{q} {}=\left(\frac{q-1}{2}\right)^nq^{\frac{1}{4}n(n-1)}\left(D_q\right)^n \left[{\tilde w}(x;aq^{\frac{1}{2}n},bq^{\frac{1}{2}n},cq^{\frac{1}{2}n},dq^{\frac{1}{2}n};q)\right] }

Substitution(s): w ~ ( x ; a , b , c , d ; q ) := w ( x ; a , b , c , d ; q ) 1 - x 2 assign ~ 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 1 superscript 𝑥 2 {\displaystyle{\displaystyle{\displaystyle{\tilde{w}}(x;a,b,c,d;q):=\frac{w(x;% a,b,c,d;q)}{\sqrt{1-x^{2}}}}}} &

w ( x ) := w ( x ; a , b , c , d ; q ) = | ( e 2 i ( θ + ϕ ) ; q ) ( a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) c e i θ , d e i θ ; q ) | 2 = h ( x , 1 ) h ( x , - 1 ) h ( x , q 1 2 ) h ( x , - q 1 2 ) h ( x , a e i ϕ ) h ( x , b e i ϕ ) h ( x , c e - i ϕ ) h ( x , d e - i ϕ ) assign 𝑤 𝑥 𝑤 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript q-Pochhammer-symbol 2 imaginary-unit 𝜃 italic-ϕ 𝑞 q-Pochhammer-symbol 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 𝑞 2 𝑥 1 𝑥 1 𝑥 superscript 𝑞 1 2 𝑥 superscript 𝑞 1 2 𝑥 𝑎 imaginary-unit italic-ϕ 𝑥 𝑏 imaginary-unit italic-ϕ 𝑥 𝑐 imaginary-unit italic-ϕ 𝑥 𝑑 imaginary-unit italic-ϕ {\displaystyle{\displaystyle{\displaystyle w(x):=w(x;a,b,c,d;q)=\left|\frac{% \left({\mathrm{e}^{2\mathrm{i}(\theta+\phi)}};q\right)_{\infty}}{\left(a{% \mathrm{e}^{\mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}% }c{\mathrm{e}^{\mathrm{i}\theta}},d{\mathrm{e}^{\mathrm{i}\theta}};q\right)_{% \infty}}\right|^{2}=\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}% })}{h(x,a{\mathrm{e}^{\mathrm{i}\phi}})h(x,b{\mathrm{e}^{\mathrm{i}\phi}})h(x,% c{\mathrm{e}^{-\mathrm{i}\phi}})h(x,d{\mathrm{e}^{-\mathrm{i}\phi}})}}}} &
h ( x , α ) := k = 0 ( 1 - 2 α x q k + α 2 q 2 k ) = ( α e i ( θ + ϕ ) , α e - i ( θ + ϕ ) ; q ) assign 𝑥 𝛼 superscript subscript product 𝑘 0 1 2 𝛼 𝑥 superscript 𝑞 𝑘 superscript 𝛼 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝛼 imaginary-unit 𝜃 italic-ϕ 𝛼 imaginary-unit 𝜃 italic-ϕ 𝑞 {\displaystyle{\displaystyle{\displaystyle h(x,\alpha):=\prod_{k=0}^{\infty}% \left(1-2\alpha xq^{k}+\alpha^{2}q^{2k}\right)=\left(\alpha{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}},\alpha{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}};q% \right)_{\infty}}}} &

x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Generating functions

\qHyperrphis 21 @ @ a e i ( θ + 2 ϕ ) , b e i ( θ + 2 ϕ ) a b e 2 i ϕ q e - i ( θ + ϕ ) t \qHyperrphis 21 @ @ c e - i ( θ + 2 ϕ ) , d e - i ( θ + 2 ϕ ) c d e - 2 i ϕ q e i ( θ + ϕ ) t = n = 0 p n ( x ; a , b , c , d ; q ) t n ( a b e 2 i ϕ , c d e - 2 i ϕ , q ; q ) n \qHyperrphis 21 @ @ 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑏 imaginary-unit 𝜃 2 italic-ϕ 𝑎 𝑏 2 imaginary-unit italic-ϕ 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 \qHyperrphis 21 @ @ 𝑐 imaginary-unit 𝜃 2 italic-ϕ 𝑑 imaginary-unit 𝜃 2 italic-ϕ 𝑐 𝑑 2 imaginary-unit italic-ϕ 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 superscript subscript 𝑛 0 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑡 𝑛 q-Pochhammer-symbol 𝑎 𝑏 2 imaginary-unit italic-ϕ 𝑐 𝑑 2 imaginary-unit italic-ϕ 𝑞 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle\qHyperrphis{2}{1}@@{a{\mathrm{e}^{% \mathrm{i}(\theta+2\phi)}},b{\mathrm{e}^{\mathrm{i}(\theta+2\phi)}}}{ab{% \mathrm{e}^{2\mathrm{i}\phi}}}{q}{{\mathrm{e}^{-\mathrm{i}(\theta+\phi)}}t}{}% \qHyperrphis{2}{1}@@{c{\mathrm{e}^{-\mathrm{i}(\theta+2\phi)}},d{\mathrm{e}^{-% \mathrm{i}(\theta+2\phi)}}}{cd{\mathrm{e}^{-2\mathrm{i}\phi}}}{q}{{\mathrm{e}^% {\mathrm{i}(\theta+\phi)}}t}{}=\sum_{n=0}^{\infty}\frac{p_{n}\!\left(x;a,b,c,d% ;q\right)t^{n}}{\left(ab{\mathrm{e}^{2\mathrm{i}\phi}},cd{\mathrm{e}^{-2% \mathrm{i}\phi}},q;q\right)_{n}}}}} {\displaystyle \qHyperrphis{2}{1}@@{a\expe^{\iunit(\theta+2\phi)},b\expe^{\iunit(\theta+2\phi)}}{ab\expe^{2\iunit\phi}}{q}{\expe^{-\iunit(\theta+\phi)}t} {} \qHyperrphis{2}{1}@@{c\expe^{-\iunit(\theta+2\phi)},d\expe^{-\iunit(\theta+2\phi)}}{cd\expe^{-2\iunit\phi}}{q}{\expe^{\iunit(\theta+\phi)}t} {}=\sum_{n=0}^{\infty}\frac{\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}t^n}{\qPochhammer{ab\expe^{2\iunit\phi},cd\expe^{-2\iunit\phi},q}{q}{n}} }

Substitution(s): x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


\qHyperrphis 21 @ @ a e i ( θ + 2 ϕ ) , c e i θ a c q e - i ( θ + ϕ ) t \qHyperrphis 21 @ @ b e - i θ , d e - i ( θ + 2 ϕ ) b d q e i ( θ + ϕ ) t = n = 0 p n ( x ; a , b , c , d ; q ) ( a c , b d , q ; q ) n t n \qHyperrphis 21 @ @ 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑐 imaginary-unit 𝜃 𝑎 𝑐 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 \qHyperrphis 21 @ @ 𝑏 imaginary-unit 𝜃 𝑑 imaginary-unit 𝜃 2 italic-ϕ 𝑏 𝑑 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 superscript subscript 𝑛 0 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑐 𝑏 𝑑 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\qHyperrphis{2}{1}@@{a{\mathrm{e}^{% \mathrm{i}(\theta+2\phi)}},c{\mathrm{e}^{\mathrm{i}\theta}}}{ac}{q}{{\mathrm{e% }^{-\mathrm{i}(\theta+\phi)}}t}\ \qHyperrphis{2}{1}@@{b{\mathrm{e}^{-\mathrm{i% }\theta}},d{\mathrm{e}^{-\mathrm{i}(\theta+2\phi)}}}{bd}{q}{{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}}t}{}=\sum_{n=0}^{\infty}\frac{p_{n}\!\left(x;a,b,c,d;% q\right)}{\left(ac,bd,q;q\right)_{n}}t^{n}}}} {\displaystyle \qHyperrphis{2}{1}@@{a\expe^{\iunit(\theta+2\phi)},c\expe^{\iunit\theta}}{ac}{q}{\expe^{-\iunit(\theta+\phi)}t}\ \qHyperrphis{2}{1}@@{b\expe^{-\iunit\theta},d\expe^{-\iunit(\theta+2\phi)}}{bd}{q}{\expe^{\iunit(\theta+\phi)}t} {}=\sum_{n=0}^{\infty}\frac{\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ac,bd,q}{q}{n}}t^n }

Substitution(s): x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


\qHyperrphis 21 @ @ a e i ( θ + 2 ϕ ) , d e i θ a d q e - i ( θ + ϕ ) t \qHyperrphis 21 @ @ b e - i θ , c e - i ( θ + 2 ϕ ) b c q e i ( θ + ϕ ) t = n = 0 p n ( x ; a , b , c , d ; q ) ( a d , b c , q ; q ) n t n \qHyperrphis 21 @ @ 𝑎 imaginary-unit 𝜃 2 italic-ϕ 𝑑 imaginary-unit 𝜃 𝑎 𝑑 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 \qHyperrphis 21 @ @ 𝑏 imaginary-unit 𝜃 𝑐 imaginary-unit 𝜃 2 italic-ϕ 𝑏 𝑐 𝑞 imaginary-unit 𝜃 italic-ϕ 𝑡 superscript subscript 𝑛 0 continuous-q-Hahn-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑑 𝑏 𝑐 𝑞 𝑞 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\qHyperrphis{2}{1}@@{a{\mathrm{e}^{% \mathrm{i}(\theta+2\phi)}},d{\mathrm{e}^{\mathrm{i}\theta}}}{ad}{q}{{\mathrm{e% }^{-\mathrm{i}(\theta+\phi)}}t}\ \qHyperrphis{2}{1}@@{b{\mathrm{e}^{-\mathrm{i% }\theta}},c{\mathrm{e}^{-\mathrm{i}(\theta+2\phi)}}}{bc}{q}{{\mathrm{e}^{% \mathrm{i}(\theta+\phi)}}t}{}=\sum_{n=0}^{\infty}\frac{p_{n}\!\left(x;a,b,c,d;% q\right)}{\left(ad,bc,q;q\right)_{n}}t^{n}}}} {\displaystyle \qHyperrphis{2}{1}@@{a\expe^{\iunit(\theta+2\phi)},d\expe^{\iunit\theta}}{ad}{q}{\expe^{-\iunit(\theta+\phi)}t}\ \qHyperrphis{2}{1}@@{b\expe^{-\iunit\theta},c\expe^{-\iunit(\theta+2\phi)}}{bc}{q}{\expe^{\iunit(\theta+\phi)}t} {}=\sum_{n=0}^{\infty}\frac{\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ad,bc,q}{q}{n}}t^n }

Substitution(s): x = cos ( θ + ϕ ) 𝑥 𝜃 italic-ϕ {\displaystyle{\displaystyle{\displaystyle x=\cos\left(\theta+\phi\right)}}}


Limit relations

Askey-Wilson polynomial to Continuous q-Hahn polynomial

p n ( cos ( θ + ϕ ) ; a e i ϕ , b e i ϕ , c e - i ϕ , d e - i ϕ | q ) = p n ( cos ( θ + ϕ ) ; a , b , c , d ; q ) Askey-Wilson-polynomial-p 𝑛 𝜃 italic-ϕ 𝑎 imaginary-unit italic-ϕ 𝑏 imaginary-unit italic-ϕ 𝑐 imaginary-unit italic-ϕ 𝑑 imaginary-unit italic-ϕ 𝑞 continuous-q-Hahn-polynomial-p 𝑛 𝜃 italic-ϕ 𝑎 𝑏 𝑐 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle p_{n}\!\left(\cos\left(\theta+\phi% \right);a{\mathrm{e}^{\mathrm{i}\phi}},b{\mathrm{e}^{\mathrm{i}\phi}},c{% \mathrm{e}^{-\mathrm{i}\phi}},d{\mathrm{e}^{-\mathrm{i}\phi}}\,|\,q\right)=p_{% n}\!\left(\cos\left(\theta+\phi\right);a,b,c,d;q\right)}}} {\displaystyle \AskeyWilson{n}@{\cos@{\theta+\phi}}{a\expe^{\iunit\phi}}{b\expe^{\iunit\phi}}{c\expe^{-\iunit\phi}}{d\expe^{-\iunit\phi}}{q}=\ctsqHahn{n}@{\cos@{\theta+\phi}}{a}{b}{c}{d}{q} }

Continuous q-Hahn polynomial to q-Meixner-Pollaczek polynomial

p n ( cos ( θ + ϕ ) ; a , 0 , 0 , a ; q ) ( q ; q ) n = P n ( cos ( θ + ϕ ) ; a | q ) continuous-q-Hahn-polynomial-p 𝑛 𝜃 italic-ϕ 𝑎 0 0 𝑎 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Meixner-Pollaczek-polynomial-P 𝑛 𝜃 italic-ϕ 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{p_{n}\!\left(\cos\left(\theta+% \phi\right);a,0,0,a;q\right)}{\left(q;q\right)_{n}}=P_{n}\!\left(\cos\left(% \theta+\phi\right);a|q\right)}}} {\displaystyle \frac{\ctsqHahn{n}@{\cos@{\theta+\phi}}{a}{0}{0}{a}{q}}{\qPochhammer{q}{q}{n}}=\qMeixnerPollaczek{n}@{\cos@{\theta+\phi}}{a}{q} }

Continuous q-Hahn polynomial to Continuous Hahn polynomial

lim q 1 p n ( cos ( ln q - x + ϕ ) ; q a , q b , q c , q d ; q ) ( 1 - q ) n ( q ; q ) n = ( - 2 sin ϕ ) n p n ( x ; a , b , c , d ) subscript 𝑞 1 continuous-q-Hahn-polynomial-p 𝑛 superscript 𝑞 𝑥 italic-ϕ superscript 𝑞 𝑎 superscript 𝑞 𝑏 superscript 𝑞 𝑐 superscript 𝑞 𝑑 𝑞 superscript 1 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript 2 italic-ϕ 𝑛 continuous-Hahn-polynomial 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}\frac{p_{n}\!% \left(\cos\left(\ln q^{-x}+\phi\right);q^{a},q^{b},q^{c},q^{d};q\right)}{(1-q)% ^{n}\left(q;q\right)_{n}}=(-2\sin\phi)^{n}p_{n}\!\left(x;a,b,c,d\right)}}} {\displaystyle \lim_{q\rightarrow 1}\frac{\ctsqHahn{n}@{\cos@{\ln@@{q^{-x}}+\phi}}{q^a}{q^b}{q^c}{q^d}{q}} {(1-q)^n\qPochhammer{q}{q}{n}}=(-2\sin@@{\phi})^n\ctsHahn{n}@{x}{a}{b}{c}{d} }

Remark

p ~ n ( x ; a , b , c , d ; q - 1 ) = p ~ n ( x ; a - 1 , b - 1 , c - 1 , d - 1 ; q ) continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 superscript 𝑞 1 continuous-q-Hahn-polynomial-normalized-p-tilde 𝑛 𝑥 superscript 𝑎 1 superscript 𝑏 1 superscript 𝑐 1 superscript 𝑑 1 𝑞 {\displaystyle{\displaystyle{\displaystyle{\tilde{p}}_{n}\!\left(x;a,b,c,d;q^{% -1}\right)={\tilde{p}}_{n}\!\left(x;a^{-1},b^{-1},c^{-1},d^{-1};q\right)}}} {\displaystyle \normctsqHahnptilde{n}@{x}{a}{b}{c}{d}{q^{-1}}=\normctsqHahnptilde{n}@{x}{a^{-1}}{b^{-1}}{c^{-1}}{d^{-1}}{q} }

Koornwinder Addendum: Continuous q-Hahn

p n ( x ; a , b ; q ) := p n ( x ; a e i ϕ , b e i ϕ , a e - i ϕ , b e - i ϕ | q ) ( x = cos ( θ + ϕ ) ) fragments little-q-Jacobi-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑞 assign Askey-Wilson-polynomial-p 𝑛 𝑥 𝑎 imaginary-unit italic-ϕ 𝑏 imaginary-unit italic-ϕ 𝑎 imaginary-unit italic-ϕ 𝑏 imaginary-unit italic-ϕ 𝑞 fragments ( x 𝜃 italic-ϕ ) {\displaystyle{\displaystyle{\displaystyle p_{n}\!\left(x;a,b;q\right):=p_{n}% \!\left(x;a{\mathrm{e}^{\mathrm{i}\phi}},b{\mathrm{e}^{\mathrm{i}\phi}},a{% \mathrm{e}^{-\mathrm{i}\phi}},b{\mathrm{e}^{-\mathrm{i}\phi}}\,|\,q\right)(x=% \cos\left(\theta+\phi\right))}}} {\displaystyle \littleqJacobi{n}@{x}{a}{b }{ q}:=\AskeyWilson{n}@{x}{a \expe^{\iunit\phi}}{b \expe^{\iunit\phi}}{a \expe^{-\iunit\phi}}{b \expe^{-\iunit\phi} }{ q} (x=\cos@{\theta+\phi}) }