Formula:KLS:14.02:26: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
m Move page script moved page Formula:KLS:14.02:26 to F:KLS:14.02:26
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 07:36, 22 December 2019


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \nabla_{\mu}:=\frac{\nabla}{\nabla\mu(x)} }}

Substitution(s)

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mu(x)=q^{-x}+\gamma\delta q^{x+1} =\lambda(x)=q^{-x}+cq^{x-N} =q^{-x}+q^{x+\gamma+\delta+1} =2a\cos@@{\theta}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x)=x(x+\gamma+\delta+1)}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mu(x):=q^{-x}+\gamma\delta q^{x+1}}} &
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mu(x)=q^{-x}+\gamma\delta q^{x+1} =\lambda(x)=q^{-x}+cq^{x-N} =q^{-x}+q^{x+\gamma+\delta+1} =2a\cos@@{\theta}}} &

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lambda(x)=x(x+\gamma+\delta+1)}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{cos}}}  : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.2 of KLS.

URL links

We ask users to provide relevant URL links in this space.