q-Racah

From DRMF
Jump to navigation Jump to search

q-Racah

Basic hypergeometric representation

Constraint(s):


Substitution(s): &

&
&
&



Substitution(s): &

&
&
&


Orthogonality relation(s)

Substitution(s): &

&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle h_n=\frac{\qPochhammer{\alpha^{-1}\beta^{-1}\gamma,\alpha^{-1}\delta,\beta^{-1},\gamma\delta q^2}{q}{\infty}} {\qPochhammer{\alpha^{-1}\beta^{-1}q^{-1},\alpha^{-1}\gamma\delta q,\beta^{-1}\gamma q,\delta q}{q}{\infty}} {}\frac{(1-\alpha\beta q)(\gamma\delta q)^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta\gamma^{-1}q,\alpha\delta^{-1}q,\beta q}{q}{n}}{\qPochhammer{\alpha q,\alpha\beta q,\beta\delta q,\gamma q}{q}{n}} =\left\{\begin{array}{ll} \displaystyle\frac{\qPochhammer{\beta^{-1},\gamma\delta q^2}{q}{N}}{\qPochhammer{\beta^{-1}\gamma q,\delta q}{q}{N}} \frac{(1-\beta q^{-N})(\gamma\delta q)^n}{(1-\beta q^{2n-N})} \frac{\qPochhammer{q,\beta q,\beta\gamma^{-1}q^{-N},\delta^{-1}q^{-N}}{q}{n}}{\qPochhammer{\beta q^{-N},\beta\delta q,\gamma q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\alpha q=q^{-N}\\ \\ \displaystyle\frac{\qPochhammer{\alpha\beta q^2,\beta\gamma^{-1}}{q}{N}}{\qPochhammer{\alpha\beta\gamma^{-1}q,\beta q}{q}{N}} \frac{(1-\alpha\beta q)(\beta^{-1}\gamma q^{-N})^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta q^{N+2},\alpha\beta\gamma^{-1}q,\beta q}{q}{n}}{\qPochhammer{\alpha q,\alpha\beta q,\gamma q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\beta\delta q=q^{-N}\\ \\ \displaystyle\frac{\qPochhammer{\alpha\beta q^2,\delta^{-1}}{q}{N}}{\qPochhammer{\alpha\delta^{-1}q,\beta q}{q}{N}} \frac{(1-\alpha\beta q)(\delta q^{-N})^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta q^{N+2},\alpha\delta^{-1}q,\beta q}{q}{n}} {\qPochhammer{\alpha q,\alpha\beta q,\beta\delta q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\gamma q=q^{-N} \end{array}\right.}} } &
&
&


Substitution(s): &

&
&
&


Recurrence relation

Substitution(s): &

&
&
&
&
&


Monic recurrence relation

Substitution(s): &


Substitution(s): &

&
&
&


q-Difference equation

Substitution(s): &

&
&
&
&
&
&


Substitution(s): &

&
&
&
&
&
&


Forward shift operator

Substitution(s): &

&
&
&


Substitution(s): &

&
&
&


Backward shift operator

Substitution(s): &

&
&
&


Substitution(s): &

&
&
&


Rodrigues-type formula

Substitution(s): &

&
&