Big q-Jacobi: Difference between revisions

From DRMF
Jump to navigation Jump to search
imported>SeedBot
DRMF
 
imported>SeedBot
DRMF
 
(No difference)

Latest revision as of 00:33, 6 March 2017

Big q-Jacobi

Basic hypergeometric representation

P n ( x ; a , b , c ; q ) = \qHyperrphis 32 @ @ q - n , a b q n + 1 , x a q , c q q q big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 𝑎 𝑏 superscript 𝑞 𝑛 1 𝑥 𝑎 𝑞 𝑐 𝑞 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c;q\right)=% \qHyperrphis{3}{2}@@{q^{-n},abq^{n+1},x}{aq,cq}{q}{q}}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{c}{q}=\qHyperrphis{3}{2}@@{q^{-n},abq^{n+1},x}{aq,cq}{q}{q} }

Orthogonality relation(s)

c q a q ( a - 1 x , c - 1 x ; q ) ( x , b c - 1 x ; q ) P m ( x ; a , b , c ; q ) P n ( x ; a , b , c ; q ) d q x = a q ( 1 - q ) ( q , a b q 2 , a - 1 c , a c - 1 q ; q ) ( a q , b q , c q , a b c - 1 q ; q ) ( 1 - a b q ) ( 1 - a b q 2 n + 1 ) ( q , b q , a b c - 1 q ; q ) n ( a q , a b q , c q ; q ) n ( - a c q 2 ) n q \binomial n 2 δ m , n superscript subscript 𝑐 𝑞 𝑎 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑐 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑏 superscript 𝑐 1 𝑥 𝑞 big-q-Jacobi-polynomial-P 𝑚 𝑥 𝑎 𝑏 𝑐 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 subscript 𝑑 𝑞 𝑥 𝑎 𝑞 1 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑏 superscript 𝑞 2 superscript 𝑎 1 𝑐 𝑎 superscript 𝑐 1 𝑞 𝑞 q-Pochhammer-symbol 𝑎 𝑞 𝑏 𝑞 𝑐 𝑞 𝑎 𝑏 superscript 𝑐 1 𝑞 𝑞 1 𝑎 𝑏 𝑞 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑎 𝑏 superscript 𝑐 1 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑎 𝑏 𝑞 𝑐 𝑞 𝑞 𝑛 superscript 𝑎 𝑐 superscript 𝑞 2 𝑛 superscript 𝑞 \binomial 𝑛 2 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\int_{cq}^{aq}\frac{\left(a^{-1}x,c^% {-1}x;q\right)_{\infty}}{\left(x,bc^{-1}x;q\right)_{\infty}}P_{m}\!\left(x;a,b% ,c;q\right)P_{n}\!\left(x;a,b,c;q\right)\,d_{q}x{}=aq(1-q)\frac{\left(q,abq^{2% },a^{-1}c,ac^{-1}q;q\right)_{\infty}}{\left(aq,bq,cq,abc^{-1}q;q\right)_{% \infty}}{}\frac{(1-abq)}{(1-abq^{2n+1})}\frac{\left(q,bq,abc^{-1}q;q\right)_{n% }}{\left(aq,abq,cq;q\right)_{n}}(-acq^{2})^{n}q^{\binomial{n}{2}}\,\delta_{m,n% }}}} {\displaystyle \int_{cq}^{aq}\frac{\qPochhammer{a^{-1}x,c^{-1}x}{q}{\infty}}{\qPochhammer{x,bc^{-1}x}{q}{\infty}} \bigqJacobi{m}@{x}{a}{b}{c}{q}\bigqJacobi{n}@{x}{a}{b}{c}{q}\,d_qx {}=aq(1-q)\frac{\qPochhammer{q,abq^2,a^{-1}c,ac^{-1}q}{q}{\infty}}{\qPochhammer{aq,bq,cq,abc^{-1}q}{q}{\infty}} {}\frac{(1-abq)}{(1-abq^{2n+1})} \frac{\qPochhammer{q,bq,abc^{-1}q}{q}{n}}{\qPochhammer{aq,abq,cq}{q}{n}}(-acq^2)^nq^{\binomial{n}{2}}\,\Kronecker{m}{n} }

Recurrence relation

( x - 1 ) P n ( x ; a , b , c ; q ) = A n P n + 1 ( x ; a , b , c ; q ) - ( A n + C n ) P n ( x ; a , b , c ; q ) + C n P n - 1 ( x ; a , b , c ; q ) 𝑥 1 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 subscript 𝐴 𝑛 big-q-Jacobi-polynomial-P 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 subscript 𝐴 𝑛 subscript 𝐶 𝑛 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 subscript 𝐶 𝑛 big-q-Jacobi-polynomial-P 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle(x-1)P_{n}\!\left(x;a,b,c;q\right)=A% _{n}P_{n+1}\!\left(x;a,b,c;q\right)-\left(A_{n}+C_{n}\right)P_{n}\!\left(x;a,b% ,c;q\right){}+C_{n}P_{n-1}\!\left(x;a,b,c;q\right)}}} {\displaystyle (x-1)\bigqJacobi{n}@{x}{a}{b}{c}{q}=A_n\bigqJacobi{n+1}@{x}{a}{b}{c}{q}-\left(A_n+C_n\right)\bigqJacobi{n}@{x}{a}{b}{c}{q} {}+C_n\bigqJacobi{n-1}@{x}{a}{b}{c}{q} }

Substitution(s): C n = - a c q n + 1 ( 1 - q n ) ( 1 - a b c - 1 q n ) ( 1 - b q n ) ( 1 - a b q 2 n ) ( 1 - a b q 2 n + 1 ) subscript 𝐶 𝑛 𝑎 𝑐 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑐 1 superscript 𝑞 𝑛 1 𝑏 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=-acq^{n+1}\frac{(1-q^{n})(1-% abc^{-1}q^{n})(1-bq^{n})}{(1-abq^{2n})(1-abq^{2n+1})}}}} &
A n = ( 1 - a q n + 1 ) ( 1 - a b q n + 1 ) ( 1 - c q n + 1 ) ( 1 - a b q 2 n + 1 ) ( 1 - a b q 2 n + 2 ) subscript 𝐴 𝑛 1 𝑎 superscript 𝑞 𝑛 1 1 𝑎 𝑏 superscript 𝑞 𝑛 1 1 𝑐 superscript 𝑞 𝑛 1 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 1 𝑎 𝑏 superscript 𝑞 2 𝑛 2 {\displaystyle{\displaystyle{\displaystyle A_{n}=\frac{(1-aq^{n+1})(1-abq^{n+1% })(1-cq^{n+1})}{(1-abq^{2n+1})(1-abq^{2n+2})}}}}


Monic recurrence relation

x P ^ n ( x ) = P ^ n + 1 ( x ) + [ 1 - ( A n + C n ) ] P ^ n ( x ) + A n - 1 C n P ^ n - 1 ( x ) 𝑥 big-q-Jacobi-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 big-q-Jacobi-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 delimited-[] 1 subscript 𝐴 𝑛 subscript 𝐶 𝑛 big-q-Jacobi-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 subscript 𝐴 𝑛 1 subscript 𝐶 𝑛 big-q-Jacobi-polynomial-monic-p 𝑛 1 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle x{\widehat{P}}_{n}\!\left(x\right)=% {\widehat{P}}_{n+1}\!\left(x\right)+\left[1-(A_{n}+C_{n})\right]{\widehat{P}}_% {n}\!\left(x\right)+A_{n-1}C_{n}{\widehat{P}}_{n-1}\!\left(x\right)}}} {\displaystyle x\monicbigqJacobi{n}@@{x}{a}{b}{c}{q}=\monicbigqJacobi{n+1}@@{x}{a}{b}{c}{q}+\left[1-(A_n+C_n)\right]\monicbigqJacobi{n}@@{x}{a}{b}{c}{q}+A_{n-1}C_n\monicbigqJacobi{n-1}@@{x}{a}{b}{c}{q} }

Substitution(s): C n = - a c q n + 1 ( 1 - q n ) ( 1 - a b c - 1 q n ) ( 1 - b q n ) ( 1 - a b q 2 n ) ( 1 - a b q 2 n + 1 ) subscript 𝐶 𝑛 𝑎 𝑐 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑐 1 superscript 𝑞 𝑛 1 𝑏 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 {\displaystyle{\displaystyle{\displaystyle C_{n}=-acq^{n+1}\frac{(1-q^{n})(1-% abc^{-1}q^{n})(1-bq^{n})}{(1-abq^{2n})(1-abq^{2n+1})}}}} &
A n = ( 1 - a q n + 1 ) ( 1 - a b q n + 1 ) ( 1 - c q n + 1 ) ( 1 - a b q 2 n + 1 ) ( 1 - a b q 2 n + 2 ) subscript 𝐴 𝑛 1 𝑎 superscript 𝑞 𝑛 1 1 𝑎 𝑏 superscript 𝑞 𝑛 1 1 𝑐 superscript 𝑞 𝑛 1 1 𝑎 𝑏 superscript 𝑞 2 𝑛 1 1 𝑎 𝑏 superscript 𝑞 2 𝑛 2 {\displaystyle{\displaystyle{\displaystyle A_{n}=\frac{(1-aq^{n+1})(1-abq^{n+1% })(1-cq^{n+1})}{(1-abq^{2n+1})(1-abq^{2n+2})}}}}


P n ( x ; a , b , c ; q ) = ( a b q n + 1 ; q ) n ( a q , c q ; q ) n P ^ n ( x ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 q-Pochhammer-symbol 𝑎 𝑏 superscript 𝑞 𝑛 1 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑐 𝑞 𝑞 𝑛 big-q-Jacobi-polynomial-monic-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c;q\right)=\frac% {\left(abq^{n+1};q\right)_{n}}{\left(aq,cq;q\right)_{n}}{\widehat{P}}_{n}\!% \left(x\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{c}{q}=\frac{\qPochhammer{abq^{n+1}}{q}{n}}{\qPochhammer{aq,cq}{q}{n}}\monicbigqJacobi{n}@@{x}{a}{b}{c}{q} }

q-Difference equation

q - n ( 1 - q n ) ( 1 - a b q n + 1 ) x 2 y ( x ) = B ( x ) y ( q x ) - [ B ( x ) + D ( x ) ] y ( x ) + D ( x ) y ( q - 1 x ) superscript 𝑞 𝑛 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 𝑛 1 superscript 𝑥 2 𝑦 𝑥 𝐵 𝑥 𝑦 𝑞 𝑥 delimited-[] 𝐵 𝑥 𝐷 𝑥 𝑦 𝑥 𝐷 𝑥 𝑦 superscript 𝑞 1 𝑥 {\displaystyle{\displaystyle{\displaystyle q^{-n}(1-q^{n})(1-abq^{n+1})x^{2}y(% x){}=B(x)y(qx)-\left[B(x)+D(x)\right]y(x)+D(x)y(q^{-1}x)}}} {\displaystyle q^{-n}(1-q^n)(1-abq^{n+1})x^2y(x) {}=B(x)y(qx)-\left[B(x)+D(x)\right]y(x)+D(x)y(q^{-1}x) }

Substitution(s): D ( x ) = ( x - a q ) ( x - c q ) 𝐷 𝑥 𝑥 𝑎 𝑞 𝑥 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle D(x)=(x-aq)(x-cq)}}} &

B ( x ) = a q ( x - 1 ) ( b x - c ) 𝐵 𝑥 𝑎 𝑞 𝑥 1 𝑏 𝑥 𝑐 {\displaystyle{\displaystyle{\displaystyle B(x)=aq(x-1)(bx-c)}}} &

y ( x ) = P n ( x ; a , b , c ; q ) 𝑦 𝑥 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle y(x)=P_{n}\!\left(x;a,b,c;q\right)}}}


Forward shift operator

P n ( x ; a , b , c ; q ) - P n ( q x ; a , b , c ; q ) = q - n + 1 ( 1 - q n ) ( 1 - a b q n + 1 ) ( 1 - a q ) ( 1 - c q ) x P n - 1 ( q x ; a q , b q , c q ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑞 𝑥 𝑎 𝑏 𝑐 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 𝑛 1 1 𝑎 𝑞 1 𝑐 𝑞 𝑥 big-q-Jacobi-polynomial-P 𝑛 1 𝑞 𝑥 𝑎 𝑞 𝑏 𝑞 𝑐 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c;q\right)-P_{n}% \!\left(qx;a,b,c;q\right){}=\frac{q^{-n+1}(1-q^{n})(1-abq^{n+1})}{(1-aq)(1-cq)% }xP_{n-1}\!\left(qx;aq,bq,cq;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{c}{q}-\bigqJacobi{n}@{qx}{a}{b}{c}{q} {}=\frac{q^{-n+1}(1-q^n)(1-abq^{n+1})}{(1-aq)(1-cq)}x\bigqJacobi{n-1}@{qx}{aq}{bq}{cq}{q} }
𝒟 q P n ( x ; a , b , c ; q ) = q - n + 1 ( 1 - q n ) ( 1 - a b q n + 1 ) ( 1 - q ) ( 1 - a q ) ( 1 - c q ) P n - 1 ( q x ; a q , b q , c q ; q ) q-derivative 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 superscript 𝑞 𝑛 1 1 superscript 𝑞 𝑛 1 𝑎 𝑏 superscript 𝑞 𝑛 1 1 𝑞 1 𝑎 𝑞 1 𝑐 𝑞 big-q-Jacobi-polynomial-P 𝑛 1 𝑞 𝑥 𝑎 𝑞 𝑏 𝑞 𝑐 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}P_{n}\!\left(x;a,b,c;% q\right)=\frac{q^{-n+1}(1-q^{n})(1-abq^{n+1})}{(1-q)(1-aq)(1-cq)}P_{n-1}\!% \left(qx;aq,bq,cq;q\right)}}} {\displaystyle \qderiv{q}\bigqJacobi{n}@{x}{a}{b}{c}{q}=\frac{q^{-n+1}(1-q^n)(1-abq^{n+1})} {(1-q)(1-aq)(1-cq)}\bigqJacobi{n-1}@{qx}{aq}{bq}{cq}{q} }

Backward shift operator

( x - a ) ( x - c ) P n ( x ; a , b , c ; q ) - a ( x - 1 ) ( b x - c ) P n ( q x ; a , b , c ; q ) = ( 1 - a ) ( 1 - c ) x P n + 1 ( x ; a q - 1 , b q - 1 , c q - 1 ; q ) 𝑥 𝑎 𝑥 𝑐 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 𝑎 𝑥 1 𝑏 𝑥 𝑐 big-q-Jacobi-polynomial-P 𝑛 𝑞 𝑥 𝑎 𝑏 𝑐 𝑞 1 𝑎 1 𝑐 𝑥 big-q-Jacobi-polynomial-P 𝑛 1 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑐 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle(x-a)(x-c)P_{n}\!\left(x;a,b,c;q% \right)-a(x-1)(bx-c)P_{n}\!\left(qx;a,b,c;q\right){}=(1-a)(1-c)xP_{n+1}\!\left% (x;aq^{-1},bq^{-1},cq^{-1};q\right)}}} {\displaystyle (x-a)(x-c)\bigqJacobi{n}@{x}{a}{b}{c}{q}-a(x-1)(bx-c)\bigqJacobi{n}@{qx}{a}{b}{c}{q} {}=(1-a)(1-c)x\bigqJacobi{n+1}@{x}{aq^{-1}}{bq^{-1}}{cq^{-1}}{q} }
𝒟 q [ w ( x ; a , b , c ; q ) P n ( x ; a , b , c ; q ) ] = ( 1 - a ) ( 1 - c ) a c ( 1 - q ) w ( x ; a q - 1 , b q - 1 , c q - 1 ; q ) P n + 1 ( x ; a q - 1 , b q - 1 , c q - 1 ; q ) q-derivative 𝑞 𝑤 𝑥 𝑎 𝑏 𝑐 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 1 𝑎 1 𝑐 𝑎 𝑐 1 𝑞 𝑤 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑐 superscript 𝑞 1 𝑞 big-q-Jacobi-polynomial-P 𝑛 1 𝑥 𝑎 superscript 𝑞 1 𝑏 superscript 𝑞 1 𝑐 superscript 𝑞 1 𝑞 {\displaystyle{\displaystyle{\displaystyle\mathcal{D}_{q}\left[w(x;a,b,c;q)P_{% n}\!\left(x;a,b,c;q\right)\right]{}=\frac{(1-a)(1-c)}{ac(1-q)}w(x;aq^{-1},bq^{% -1},cq^{-1};q){}P_{n+1}\!\left(x;aq^{-1},bq^{-1},cq^{-1};q\right)}}} {\displaystyle \qderiv{q}\left[w(x;a,b,c;q)\bigqJacobi{n}@{x}{a}{b}{c}{q}\right] {}=\frac{(1-a)(1-c)}{ac(1-q)}w(x;aq^{-1},bq^{-1},cq^{-1};q) {} \bigqJacobi{n+1}@{x}{aq^{-1}}{bq^{-1}}{cq^{-1}}{q} }

Substitution(s): w ( x ; a , b , c ; q ) = ( a - 1 x , c - 1 x ; q ) ( x , b c - 1 x ; q ) 𝑤 𝑥 𝑎 𝑏 𝑐 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑐 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑏 superscript 𝑐 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b,c;q)=\frac{\left(a^{-1}x,c^% {-1}x;q\right)_{\infty}}{\left(x,bc^{-1}x;q\right)_{\infty}}}}}


Rodrigues-type formula

w ( x ; a , b , c ; q ) P n ( x ; a , b , c ; q ) = a n c n q n ( n + 1 ) ( 1 - q ) n ( a q , c q ; q ) n ( 𝒟 q ) n [ w ( x ; a q n , b q n , c q n ; q ) ] 𝑤 𝑥 𝑎 𝑏 𝑐 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 superscript 𝑎 𝑛 superscript 𝑐 𝑛 superscript 𝑞 𝑛 𝑛 1 superscript 1 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑐 𝑞 𝑞 𝑛 superscript q-derivative 𝑞 𝑛 delimited-[] 𝑤 𝑥 𝑎 superscript 𝑞 𝑛 𝑏 superscript 𝑞 𝑛 𝑐 superscript 𝑞 𝑛 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b,c;q)P_{n}\!\left(x;a,b,c;q% \right){}=\frac{a^{n}c^{n}q^{n(n+1)}(1-q)^{n}}{\left(aq,cq;q\right)_{n}}\left(% \mathcal{D}_{q}\right)^{n}\left[w(x;aq^{n},bq^{n},cq^{n};q)\right]}}} {\displaystyle w(x;a,b,c;q)\bigqJacobi{n}@{x}{a}{b}{c}{q} {}=\frac{a^nc^nq^{n(n+1)}(1-q)^n} {\qPochhammer{aq,cq}{q}{n}}\left(\qderiv{q}\right)^n\left[w(x;aq^n,bq^n,cq^n;q)\right] }

Substitution(s): w ( x ; a , b , c ; q ) = ( a - 1 x , c - 1 x ; q ) ( x , b c - 1 x ; q ) 𝑤 𝑥 𝑎 𝑏 𝑐 𝑞 q-Pochhammer-symbol superscript 𝑎 1 𝑥 superscript 𝑐 1 𝑥 𝑞 q-Pochhammer-symbol 𝑥 𝑏 superscript 𝑐 1 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle w(x;a,b,c;q)=\frac{\left(a^{-1}x,c^% {-1}x;q\right)_{\infty}}{\left(x,bc^{-1}x;q\right)_{\infty}}}}}


Generating functions

\qHyperrphis 21 @ @ a q x - 1 , 0 a q q x t \qHyperrphis 11 @ @ b c - 1 x b q q c q t = n = 0 ( c q ; q ) n ( b q , q ; q ) n P n ( x ; a , b , c ; q ) t n \qHyperrphis 21 @ @ 𝑎 𝑞 superscript 𝑥 1 0 𝑎 𝑞 𝑞 𝑥 𝑡 \qHyperrphis 11 @ @ 𝑏 superscript 𝑐 1 𝑥 𝑏 𝑞 𝑞 𝑐 𝑞 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝑐 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑞 𝑛 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\qHyperrphis{2}{1}@@{aqx^{-1},0}{aq}% {q}{xt}\,\qHyperrphis{1}{1}@@{bc^{-1}x}{bq}{q}{cqt}{}=\sum_{n=0}^{\infty}\frac% {\left(cq;q\right)_{n}}{\left(bq,q;q\right)_{n}}P_{n}\!\left(x;a,b,c;q\right)t% ^{n}}}} {\displaystyle \qHyperrphis{2}{1}@@{aqx^{-1},0}{aq}{q}{xt}\,\qHyperrphis{1}{1}@@{bc^{-1}x}{bq}{q}{cqt} {}=\sum_{n=0}^{\infty}\frac{\qPochhammer{cq}{q}{n}}{\qPochhammer{bq,q}{q}{n}}\bigqJacobi{n}@{x}{a}{b}{c}{q}t^n }
\qHyperrphis 21 @ @ c q x - 1 , 0 c q q x t \qHyperrphis 11 @ @ b c - 1 x a b c - 1 q q a q t = n = 0 ( a q ; q ) n ( a b c - 1 q , q ; q ) n P n ( x ; a , b , c ; q ) t n \qHyperrphis 21 @ @ 𝑐 𝑞 superscript 𝑥 1 0 𝑐 𝑞 𝑞 𝑥 𝑡 \qHyperrphis 11 @ @ 𝑏 superscript 𝑐 1 𝑥 𝑎 𝑏 superscript 𝑐 1 𝑞 𝑞 𝑎 𝑞 𝑡 superscript subscript 𝑛 0 q-Pochhammer-symbol 𝑎 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑏 superscript 𝑐 1 𝑞 𝑞 𝑞 𝑛 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 superscript 𝑡 𝑛 {\displaystyle{\displaystyle{\displaystyle\qHyperrphis{2}{1}@@{cqx^{-1},0}{cq}% {q}{xt}\,\qHyperrphis{1}{1}@@{bc^{-1}x}{abc^{-1}q}{q}{aqt}{}=\sum_{n=0}^{% \infty}\frac{\left(aq;q\right)_{n}}{\left(abc^{-1}q,q;q\right)_{n}}P_{n}\!% \left(x;a,b,c;q\right)t^{n}}}} {\displaystyle \qHyperrphis{2}{1}@@{cqx^{-1},0}{cq}{q}{xt}\,\qHyperrphis{1}{1}@@{bc^{-1}x}{abc^{-1}q}{q}{aqt} {}=\sum_{n=0}^{\infty}\frac{\qPochhammer{aq}{q}{n}}{\qPochhammer{abc^{-1}q,q}{q}{n}}\bigqJacobi{n}@{x}{a}{b}{c}{q}t^n }

Limit relations

Askey-Wilson polynomial to Big q-Jacobi polynomial

p ~ n ( x ; a , b , c , d | q ) = a n p n ( x ; a , b , c , d | q ) ( a b , a c , a d ; q ) n Askey-Wilson-polynomial-normalized-p-tilde 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑎 𝑛 Askey-Wilson-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 𝑎 𝑐 𝑎 𝑑 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle{\tilde{p}}_{n}\!\left(x;a,b,c,d\,|% \,q\right)=\frac{a^{n}p_{n}\!\left(x;a,b,c,d\,|\,q\right)}{\left(ab,ac,ad;q% \right)_{n}}}}} {\displaystyle \normAskeyWilsonptilde{n}@{x}{a}{b}{c}{d}{q}=\frac{a^n\AskeyWilson{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab,ac,ad}{q}{n}} }
lim a 0 p ~ n ( 1 2 a - 1 x ; a , a - 1 α q , a - 1 γ q , a β γ - 1 | q ) = P n ( x ; α , β , γ ; q ) subscript 𝑎 0 Askey-Wilson-polynomial-normalized-p-tilde 𝑛 1 2 superscript 𝑎 1 𝑥 𝑎 superscript 𝑎 1 𝛼 𝑞 superscript 𝑎 1 𝛾 𝑞 𝑎 𝛽 superscript 𝛾 1 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑥 𝛼 𝛽 𝛾 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\rightarrow 0}{\tilde{p}}_{n}% \!\left(\textstyle\frac{1}{2}a^{-1}x;a,a^{-1}\alpha q,a^{-1}\gamma q,a\beta% \gamma^{-1}\,|\,q\right)=P_{n}\!\left(x;\alpha,\beta,\gamma;q\right)}}} {\displaystyle \lim_{a\rightarrow 0}\normAskeyWilsonptilde{n}@{\textstyle\frac{1}{2}a^{-1}x}{a}{a^{-1}\alpha q}{ a^{-1}\gamma q}{a\beta \gamma^{-1}}{q}=\bigqJacobi{n}@{x}{\alpha}{\beta}{\gamma}{q} }

q-Racah polynomial to Big q-Jacobi polynomial

R n ( μ ( x ) ; a , b , c , 0 | q ) = P n ( q - x ; a , b , c ; q ) q-Racah-polynomial-R 𝑛 𝜇 𝑥 𝑎 𝑏 𝑐 0 𝑞 big-q-Jacobi-polynomial-P 𝑛 superscript 𝑞 𝑥 𝑎 𝑏 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle R_{n}\!\left(\mu(x);a,b,c,0\,|\,q% \right)=P_{n}\!\left(q^{-x};a,b,c;q\right)}}} {\displaystyle \qRacah{n}@{\mu(x)}{a}{b}{c}{0}{q}=\bigqJacobi{n}@{q^{-x}}{a}{b}{c}{q} }

Big q-Jacobi polynomial to Big q-Laguerre polynomial

P n ( x ; a , 0 , c ; q ) = P n ( x ; a , c ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 0 𝑐 𝑞 big-q-Laguerre-polynomial-P 𝑛 𝑥 𝑎 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,0,c;q\right)=P_{n}% \!\left(x;a,c;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{0}{c}{q}=\bigqLaguerre{n}@{x}{a}{c}{q} }

Big q-Jacobi polynomial to Little q-Jacobi polynomial

lim c - P n ( c q x ; a , b , c ; q ) = p n ( x ; a , b ; q ) subscript 𝑐 big-q-Jacobi-polynomial-P 𝑛 𝑐 𝑞 𝑥 𝑎 𝑏 𝑐 𝑞 little-q-Jacobi-polynomial-p 𝑛 𝑥 𝑎 𝑏 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow-\infty}P_{n}\!% \left(cqx;a,b,c;q\right)=p_{n}\!\left(x;a,b;q\right)}}} {\displaystyle \lim_{c\rightarrow -\infty}\bigqJacobi{n}@{cqx}{a}{b}{c}{q}=\littleqJacobi{n}@{x}{a}{b}{q} }

Big q-Jacobi polynomial to q-Meixner polynomial

lim c - P n ( q - x ; a , - a - 1 c d - 1 , c ; q ) = M n ( q - x ; a , d ; q ) subscript 𝑐 big-q-Jacobi-polynomial-P 𝑛 superscript 𝑞 𝑥 𝑎 superscript 𝑎 1 𝑐 superscript 𝑑 1 𝑐 𝑞 q-Meixner-polynomial-M 𝑛 superscript 𝑞 𝑥 𝑎 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{c\rightarrow-\infty}P_{n}\!% \left(q^{-x};a,-a^{-1}cd^{-1},c;q\right)=M_{n}\!\left(q^{-x};a,d;q\right)}}} {\displaystyle \lim_{c\rightarrow -\infty}\bigqJacobi{n}@{q^{-x}}{a}{-a^{-1}cd^{-1}}{c}{q}=\qMeixner{n}@{q^{-x}}{a}{d}{q} }

Big q-Jacobi polynomial to Jacobi polynomial

lim q 1 P n ( x ; q α , q β , 0 ; q ) = P n ( α , β ) ( 2 x - 1 ) P n ( α , β ) ( 1 ) subscript 𝑞 1 big-q-Jacobi-polynomial-P 𝑛 𝑥 superscript 𝑞 𝛼 superscript 𝑞 𝛽 0 𝑞 Jacobi-polynomial-P 𝛼 𝛽 𝑛 2 𝑥 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}P_{n}\!\left(x;% q^{\alpha},q^{\beta},0;q\right)=\frac{P^{(\alpha,\beta)}_{n}\left(2x-1\right)}% {P^{(\alpha,\beta)}_{n}\left(1\right)}}}} {\displaystyle \lim_{q\rightarrow 1}\bigqJacobi{n}@{x}{q^{\alpha}}{q^{\beta}}{0}{q}=\frac{\Jacobi{\alpha}{\beta}{n}@{2x-1}}{\Jacobi{\alpha}{\beta}{n}@{1}} }
lim q 1 P n ( x ; q α , q β , - q γ ; q ) = P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) subscript 𝑞 1 big-q-Jacobi-polynomial-P 𝑛 𝑥 superscript 𝑞 𝛼 superscript 𝑞 𝛽 superscript 𝑞 𝛾 𝑞 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 {\displaystyle{\displaystyle{\displaystyle\lim_{q\rightarrow 1}P_{n}\!\left(x;% q^{\alpha},q^{\beta},-q^{\gamma};q\right)=\frac{P^{(\alpha,\beta)}_{n}\left(x% \right)}{P^{(\alpha,\beta)}_{n}\left(1\right)}}}} {\displaystyle \lim_{q\rightarrow 1}\bigqJacobi{n}@{x}{q^{\alpha}}{q^{\beta}}{-q^{\gamma}}{q}=\frac{\Jacobi{\alpha}{\beta}{n}@{x}}{\Jacobi{\alpha}{\beta}{n}@{1}} }

Remarks

P n ( x ; a , b , 0 ; q ) = ( b q ; q ) n ( a q ; q ) n ( - 1 ) n a n q n + \binomial n 2 p n ( a - 1 q - 1 x ; b , a ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 0 𝑞 q-Pochhammer-symbol 𝑏 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑎 𝑞 𝑞 𝑛 superscript 1 𝑛 superscript 𝑎 𝑛 superscript 𝑞 𝑛 \binomial 𝑛 2 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑎 1 superscript 𝑞 1 𝑥 𝑏 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,0;q\right)=\frac% {\left(bq;q\right)_{n}}{\left(aq;q\right)_{n}}(-1)^{n}a^{n}q^{n+\binomial{n}{2% }}p_{n}\!\left(a^{-1}q^{-1}x;b,a;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{0}{q}=\frac{\qPochhammer{bq}{q}{n}}{\qPochhammer{aq}{q}{n}}(-1)^na^nq^{n+\binomial{n}{2}}\littleqJacobi{n}@{a^{-1}q^{-1}x}{b}{a}{q} }
P n ( x ; a , b , c , d ; q ) = \qHyperrphis 32 @ @ q - n , a b q n + 1 , a c - 1 q x a q , - a c - 1 d q q q q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 𝑎 𝑏 superscript 𝑞 𝑛 1 𝑎 superscript 𝑐 1 𝑞 𝑥 𝑎 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=% \qHyperrphis{3}{2}@@{q^{-n},abq^{n+1},ac^{-1}qx}{aq,-ac^{-1}dq}{q}{q}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q}=\qHyperrphis{3}{2}@@{q^{-n},abq^{n+1},ac^{-1}qx}{aq,-ac^{-1}dq}{q}{q} }
( c - 1 q x , - d - 1 q x ; q ) ( a c - 1 q x , - b d - 1 q x ; q ) d q x q-Pochhammer-symbol superscript 𝑐 1 𝑞 𝑥 superscript 𝑑 1 𝑞 𝑥 𝑞 q-Pochhammer-symbol 𝑎 superscript 𝑐 1 𝑞 𝑥 𝑏 superscript 𝑑 1 𝑞 𝑥 𝑞 subscript 𝑑 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle\frac{\left(c^{-1}qx,-d^{-1}qx;q% \right)_{\infty}}{\left(ac^{-1}qx,-bd^{-1}qx;q\right)_{\infty}}d_{q}x}}} {\displaystyle \frac{\qPochhammer{c^{-1}qx,-d^{-1}qx}{q}{\infty}}{\qPochhammer{ac^{-1}qx,-bd^{-1}qx}{q}{\infty}}d_qx }
P n ( x ; a , b , c , d ; q ) = P n ( a c - 1 q x ; a , b , - a c - 1 d ; q ) q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑎 superscript 𝑐 1 𝑞 𝑥 𝑎 𝑏 𝑎 superscript 𝑐 1 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=P_{% n}\!\left(ac^{-1}qx;a,b,-ac^{-1}d;q\right)}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q}=\bigqJacobi{n}@{ac^{-1}qx}{a}{b}{-ac^{-1}d}{q} }
P n ( x ; a , b , c ; q ) = P n ( x ; a , b , a q , - c q ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑎 𝑞 𝑐 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c;q\right)=P_{n}% \!\left(x;a,b,aq,-cq;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{c}{q}=\bigqJacobiIVparam{n}@{x}{a}{b}{aq}{-cq}{q} }

Koornwinder Addendum: Big q-Jacobi

Different notation

P n ( x ; a , b , c , d ; q ) := P n ( q a c - 1 x ; a , b , - a c - 1 d ; q ) assign q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑎 𝑏 𝑎 superscript 𝑐 1 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right):=P_% {n}\!\left(qac^{-1}x;a,b,-ac^{-1}d;q\right)}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q}:=\bigqJacobi{n}@{qac^{-1}x}{a}{b}{-ac^{-1}d}{q} }
P n ( x ; a , b , c , d ; q ) = \qHyperrphis 32 @ @ q - n , q n + 1 a b , q a c - 1 x q a , - q a c - 1 d q q q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑛 1 𝑎 𝑏 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑞 𝑎 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=% \qHyperrphis{3}{2}@@{q^{-n},q^{n+1}ab,qac^{-1}x}{qa,-qac^{-1}d}{q}{q}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =\qHyperrphis{3}{2}@@{q^{-n},q^{n+1}ab,qac^{-1}x}{qa,-qac^{-1}d}{q}{q} }
P n ( x ; a , b , c , d ; q ) = P n ( λ x ; a , b , λ c , λ d ; q ) q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 𝜆 𝑥 𝑎 𝑏 𝜆 𝑐 𝜆 𝑑 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=P_{% n}\!\left(\lambda x;a,b,\lambda c,\lambda d;q\right)}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q}=\bigqJacobiIVparam{n}@{\lambda x}{a}{b}{\lambda c}{\lambda d}{q} }
P n ( x ; a , b , c ; q ) = P n ( - q - 1 c - 1 x ; a , b , - a c - 1 , 1 ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑞 1 superscript 𝑐 1 𝑥 𝑎 𝑏 𝑎 superscript 𝑐 1 1 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c;q\right)=P_{n}% \!\left(-q^{-1}c^{-1}x;a,b,-ac^{-1},1;q\right)}}} {\displaystyle \bigqJacobi{n}@{x}{a}{b}{c}{q}=\bigqJacobiIVparam{n}@{-q^{-1}c^{-1}x}{a}{b}{-ac^{-1}}{1}{q} }

Orthogonality relation

- d c P m ( x ; a , b , c , d ; q ) P n ( x ; a , b , c , d ; q ) ( q x / c , - q x / d ; q ) ( q a x / c , - q b x / d ; q ) d q x = h n δ m , n superscript subscript 𝑑 𝑐 q-Jacobi-polynomial-four-parameters-P 𝑚 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑞 𝑥 𝑐 𝑞 𝑥 𝑑 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑥 𝑐 𝑞 𝑏 𝑥 𝑑 𝑞 subscript 𝑑 𝑞 𝑥 subscript 𝑛 Kronecker-delta 𝑚 𝑛 {\displaystyle{\displaystyle{\displaystyle\int_{-d}^{c}P_{m}\!\left(x;a,b,c,d;% q\right)P_{n}\!\left(x;a,b,c,d;q\right)\frac{\left(qx/c,-qx/d;q\right)_{\infty% }}{\left(qax/c,-qbx/d;q\right)_{\infty}}d_{q}x=h_{n}\delta_{m,n}}}} {\displaystyle \int_{-d}^c \bigqJacobiIVparam{m}@{x}{a}{b}{c}{d}{q} \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} \frac{\qPochhammer{qx/c,-qx/d}{q}{\infty}}{\qPochhammer{qax/c,-qbx/d}{q}{\infty}} d_qx=h_n \Kronecker{m}{n} }

Substitution(s): h 0 = ( 1 - q ) c ( q , - d / c , - q c / d , q 2 a b ; q ) ( q a , q b , - q b c / d , - q a d / c ; q ) subscript 0 1 𝑞 𝑐 q-Pochhammer-symbol 𝑞 𝑑 𝑐 𝑞 𝑐 𝑑 superscript 𝑞 2 𝑎 𝑏 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑎 𝑑 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)c\frac{\left(q,-d/c,-qc/% d,q^{2}ab;q\right)_{\infty}}{\left(qa,qb,-qbc/d,-qad/c;q\right)_{\infty}}}}} &
h 0 = ( 1 - q ) z + ( q , a / c , a / d , b / c , b / d ; q ) ( a b / ( q c d ) ; q ) θ ( z - / z + , c d z - z + ; q ) θ ( c z - , d z - , c z + , d z + ; q ) subscript 0 1 𝑞 subscript 𝑧 q-Pochhammer-symbol 𝑞 𝑎 𝑐 𝑎 𝑑 𝑏 𝑐 𝑏 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 𝑞 𝑐 𝑑 𝑞 𝜃 subscript 𝑧 subscript 𝑧 𝑐 𝑑 subscript 𝑧 subscript 𝑧 𝑞 𝜃 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)z_{+}\frac{\left(q,a/c,a% /d,b/c,b/d;q\right)_{\infty}}{\left(ab/(qcd);q\right)_{\infty}}\frac{\theta(z_% {-}/z_{+},cdz_{-}z_{+};q)}{\theta(cz_{-},dz_{-},cz_{+},dz_{+};q)}}}}


h n h 0 = q 1 2 n ( n - 1 ) ( q 2 a 2 d c ) n 1 - q a b 1 - q 2 n + 1 a b ( q , q b , - q b c / d ; q ) n ( q a , q a b , - q a d / c ; q ) n = ( - 1 ) n ( c 2 a b ) n q 1 2 n ( n - 1 ) q 2 n ( q , q d / a , q d / b ; q ) n ( q c d / ( a b ) , q c / a , q c / b ; q ) n 1 - q c d / ( a b ) 1 - q 2 n + 1 c d / ( a b ) subscript 𝑛 subscript 0 superscript 𝑞 1 2 𝑛 𝑛 1 superscript superscript 𝑞 2 superscript 𝑎 2 𝑑 𝑐 𝑛 1 𝑞 𝑎 𝑏 1 superscript 𝑞 2 𝑛 1 𝑎 𝑏 q-Pochhammer-symbol 𝑞 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑎 𝑏 𝑞 𝑎 𝑑 𝑐 𝑞 𝑛 superscript 1 𝑛 superscript superscript 𝑐 2 𝑎 𝑏 𝑛 superscript 𝑞 1 2 𝑛 𝑛 1 superscript 𝑞 2 𝑛 q-Pochhammer-symbol 𝑞 𝑞 𝑑 𝑎 𝑞 𝑑 𝑏 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑐 𝑑 𝑎 𝑏 𝑞 𝑐 𝑎 𝑞 𝑐 𝑏 𝑞 𝑛 1 𝑞 𝑐 𝑑 𝑎 𝑏 1 superscript 𝑞 2 𝑛 1 𝑐 𝑑 𝑎 𝑏 {\displaystyle{\displaystyle{\displaystyle\frac{h_{n}}{h_{0}}=q^{\frac{1}{2}n(% n-1)}\left(\frac{q^{2}a^{2}d}{c}\right)^{n}\frac{1-qab}{1-q^{2n+1}ab}\frac{% \left(q,qb,-qbc/d;q\right)_{n}}{\left(qa,qab,-qad/c;q\right)_{n}}=(-1)^{n}% \left(\frac{c^{2}}{ab}\right)^{n}q^{\frac{1}{2}n(n-1)}q^{2n}\frac{\left(q,qd/a% ,qd/b;q\right)_{n}}{\left(qcd/(ab),qc/a,qc/b;q\right)_{n}}\frac{1-qcd/(ab)}{1-% q^{2n+1}cd/(ab)}}}} {\displaystyle \frac{h_n}{h_0}=q^{\frac12 n(n-1)}\left(\frac{q^2a^2d}c\right)^n \frac{1-qab}{1-q^{2n+1}ab} \frac{\qPochhammer{q,qb,-qbc/d}{q}{n}}{\qPochhammer{qa,qab,-qad/c}{q}{n}} =(-1)^n\left(\frac{c^2}{ab}\right)^n q^{\frac12 n(n-1)} q^{2n} \frac{\qPochhammer{q,qd/a,qd/b}{q}{n}}{\qPochhammer{qcd/(ab),qc/a,qc/b}{q}{n}} \frac{1-qcd/(ab)}{1-q^{2n+1}cd/(ab)} }

Substitution(s): h 0 = ( 1 - q ) c ( q , - d / c , - q c / d , q 2 a b ; q ) ( q a , q b , - q b c / d , - q a d / c ; q ) subscript 0 1 𝑞 𝑐 q-Pochhammer-symbol 𝑞 𝑑 𝑐 𝑞 𝑐 𝑑 superscript 𝑞 2 𝑎 𝑏 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑎 𝑑 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)c\frac{\left(q,-d/c,-qc/% d,q^{2}ab;q\right)_{\infty}}{\left(qa,qb,-qbc/d,-qad/c;q\right)_{\infty}}}}} &
h 0 = ( 1 - q ) z + ( q , a / c , a / d , b / c , b / d ; q ) ( a b / ( q c d ) ; q ) θ ( z - / z + , c d z - z + ; q ) θ ( c z - , d z - , c z + , d z + ; q ) subscript 0 1 𝑞 subscript 𝑧 q-Pochhammer-symbol 𝑞 𝑎 𝑐 𝑎 𝑑 𝑏 𝑐 𝑏 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 𝑞 𝑐 𝑑 𝑞 𝜃 subscript 𝑧 subscript 𝑧 𝑐 𝑑 subscript 𝑧 subscript 𝑧 𝑞 𝜃 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)z_{+}\frac{\left(q,a/c,a% /d,b/c,b/d;q\right)_{\infty}}{\left(ab/(qcd);q\right)_{\infty}}\frac{\theta(z_% {-}/z_{+},cdz_{-}z_{+};q)}{\theta(cz_{-},dz_{-},cz_{+},dz_{+};q)}}}}


Other hypergeometric representation and asymptotics

P n ( x ; a , b , c , d ; q ) = ( - q b d - 1 x ; q ) n ( - q - n a - 1 c d - 1 ; q ) n \qHyperrphis 32 @ @ q - n , q - n b - 1 , c x - 1 q a , - q - n b - 1 d x - 1 q q q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑞 𝑏 superscript 𝑑 1 𝑥 𝑞 𝑛 q-Pochhammer-symbol superscript 𝑞 𝑛 superscript 𝑎 1 𝑐 superscript 𝑑 1 𝑞 𝑛 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑛 superscript 𝑏 1 𝑐 superscript 𝑥 1 𝑞 𝑎 superscript 𝑞 𝑛 superscript 𝑏 1 𝑑 superscript 𝑥 1 𝑞 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=% \frac{\left(-qbd^{-1}x;q\right)_{n}}{\left(-q^{-n}a^{-1}cd^{-1};q\right)_{n}}% \qHyperrphis{3}{2}@@{q^{-n},q^{-n}b^{-1},cx^{-1}}{qa,-q^{-n}b^{-1}dx^{-1}}{q}{% q}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =\frac{\qPochhammer{-qbd^{-1}x}{q}{n}}{\qPochhammer{-q^{-n}a^{-1}cd^{-1}}{q}{n}} \qHyperrphis{3}{2}@@{q^{-n},q^{-n}b^{-1},cx^{-1}}{qa,-q^{-n}b^{-1}dx^{-1}}{q}{q} }
P n ( x ; a , b , c , d ; q ) = ( q a c - 1 x ) n ( q b , c x - 1 ; q ) n ( q a , - q a c - 1 d ; q ) n \qHyperrphis 32 @ @ q - n , q - n a - 1 , - q b d - 1 x q b , q 1 - n c - 1 x q - q n + 1 a c - 1 d q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑐 superscript 𝑥 1 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑛 \qHyperrphis 32 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑛 superscript 𝑎 1 𝑞 𝑏 superscript 𝑑 1 𝑥 𝑞 𝑏 superscript 𝑞 1 𝑛 superscript 𝑐 1 𝑥 𝑞 superscript 𝑞 𝑛 1 𝑎 superscript 𝑐 1 𝑑 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=(% qac^{-1}x)^{n}\frac{\left(qb,cx^{-1};q\right)_{n}}{\left(qa,-qac^{-1}d;q\right% )_{n}}\qHyperrphis{3}{2}@@{q^{-n},q^{-n}a^{-1},-qbd^{-1}x}{qb,q^{1-n}c^{-1}x}{% q}{-q^{n+1}ac^{-1}d}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =(qac^{-1}x)^n \frac{\qPochhammer{qb,cx^{-1}}{q}{n}}{\qPochhammer{qa,-qac^{-1}d}{q}{n}} \qHyperrphis{3}{2}@@{q^{-n},q^{-n}a^{-1},-qbd^{-1}x}{qb,q^{1-n}c^{-1}x}{q}{-q^{n+1}ac^{-1}d} }
P n ( x ; a , b , c , d ; q ) = ( q a c - 1 x ) n ( q b , q ; q ) n ( - q a c - 1 d ; q ) n k = 0 n ( c x - 1 ; q ) n - k ( q , q a ; q ) n - k ( - q b d - 1 x ; q ) k ( q b , q ; q ) k ( - 1 ) k q 1 2 k ( k - 1 ) ( - d x - 1 ) k q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑛 superscript subscript 𝑘 0 𝑛 q-Pochhammer-symbol 𝑐 superscript 𝑥 1 𝑞 𝑛 𝑘 q-Pochhammer-symbol 𝑞 𝑞 𝑎 𝑞 𝑛 𝑘 q-Pochhammer-symbol 𝑞 𝑏 superscript 𝑑 1 𝑥 𝑞 𝑘 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑞 𝑘 superscript 1 𝑘 superscript 𝑞 1 2 𝑘 𝑘 1 superscript 𝑑 superscript 𝑥 1 𝑘 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,b,c,d;q\right)=(% qac^{-1}x)^{n}\frac{\left(qb,q;q\right)_{n}}{\left(-qac^{-1}d;q\right)_{n}}% \sum_{k=0}^{n}\frac{\left(cx^{-1};q\right)_{n-k}}{\left(q,qa;q\right)_{n-k}}% \frac{\left(-qbd^{-1}x;q\right)_{k}}{\left(qb,q;q\right)_{k}}(-1)^{k}q^{\frac{% 1}{2}k(k-1)}(-dx^{-1})^{k}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =(qac^{-1}x)^n \frac{\qPochhammer{qb,q}{q}{n}}{\qPochhammer{-qac^{-1}d}{q}{n}} \sum_{k=0}^n\frac{\qPochhammer{cx^{-1}}{q}{n-k}}{\qPochhammer{q,qa}{q}{n-k}} \frac{\qPochhammer{-qbd^{-1}x}{q}{k}}{\qPochhammer{qb,q}{q}{k}} (-1)^k q^{\frac12 k(k-1)}(-dx^{-1})^k }
lim n ( q a c - 1 x ) - n P n ( x ; a , b , c , d ; q ) = ( c x - 1 , - d x - 1 ; q ) ( - q a c - 1 d , q a ; q ) subscript 𝑛 superscript 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑛 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑐 superscript 𝑥 1 𝑑 superscript 𝑥 1 𝑞 q-Pochhammer-symbol 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑎 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{n\to\infty}(qac^{-1}x)^{-n}P_{% n}\!\left(x;a,b,c,d;q\right)=\frac{\left(cx^{-1},-dx^{-1};q\right)_{\infty}}{% \left(-qac^{-1}d,qa;q\right)_{\infty}}}}} {\displaystyle \lim_{n\to\infty}(qac^{-1}x)^{-n} \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =\frac{\qPochhammer{cx^{-1},-dx^{-1}}{q}{\infty}}{\qPochhammer{-qac^{-1}d,qa}{q}{\infty}} }
lim n ( q a c - 1 x ) - n P n ( x ; a , b , c , d ; q ) = ( q b , c x - 1 ; q ) n ( q a , - q a c - 1 d ; q ) n \qHyperrphis 11 @ @ - q b d - 1 x q b q - d x - 1 subscript 𝑛 superscript 𝑞 𝑎 superscript 𝑐 1 𝑥 𝑛 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Pochhammer-symbol 𝑞 𝑏 𝑐 superscript 𝑥 1 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑎 superscript 𝑐 1 𝑑 𝑞 𝑛 \qHyperrphis 11 @ @ 𝑞 𝑏 superscript 𝑑 1 𝑥 𝑞 𝑏 𝑞 𝑑 superscript 𝑥 1 {\displaystyle{\displaystyle{\displaystyle\lim_{n\to\infty}(qac^{-1}x)^{-n}P_{% n}\!\left(x;a,b,c,d;q\right)=\frac{\left(qb,cx^{-1};q\right)_{n}}{\left(qa,-% qac^{-1}d;q\right)_{n}}\qHyperrphis{1}{1}@@{-qbd^{-1}x}{qb}{q}{-dx^{-1}}}}} {\displaystyle \lim_{n\to\infty}(qac^{-1}x)^{-n} \bigqJacobiIVparam{n}@{x}{a}{b}{c}{d}{q} =\frac{\qPochhammer{qb,cx^{-1}}{q}{n}}{\qPochhammer{qa,-qac^{-1}d}{q}{n}} \qHyperrphis{1}{1}@@{-qbd^{-1}x}{qb}{q}{-dx^{-1}} }

Symmetry

P n ( - x ; a , b , c , d ; q ) P n ( - d / ( q b ) ; a , b , c , d ; q ) = P n ( x ; b , a , d , c ; q ) q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑏 𝑐 𝑑 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑑 𝑞 𝑏 𝑎 𝑏 𝑐 𝑑 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑏 𝑎 𝑑 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle\frac{P_{n}\!\left(-x;a,b,c,d;q% \right)}{P_{n}\!\left(-d/(qb);a,b,c,d;q\right)}=P_{n}\!\left(x;b,a,d,c;q\right% )}}} {\displaystyle \frac{\bigqJacobiIVparam{n}@{-x}{a}{b}{c}{d}{q}}{\bigqJacobiIVparam{n}@{-d/(qb)}{a}{b}{c}{d}{q}} =\bigqJacobiIVparam{n}@{x}{b}{a}{d}{c}{q} }

Big q-Jacobi: Special values

P n ( c / ( q a ) ; a , b , c , d ; q ) = 1 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑐 𝑞 𝑎 𝑎 𝑏 𝑐 𝑑 𝑞 1 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(c/(qa);a,b,c,d;q\right% )=1}}} {\displaystyle \bigqJacobiIVparam{n}@{c/(qa)}{a}{b}{c}{d}{q}=1 }
P n ( - d / ( q b ) ; a , b , c , d ; q ) = ( - a d b c ) n ( q b , - q b c / d ; q ) n ( q a , - q a d / c ; q ) n q-Jacobi-polynomial-four-parameters-P 𝑛 𝑑 𝑞 𝑏 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑎 𝑑 𝑏 𝑐 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑎 𝑑 𝑐 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(-d/(qb);a,b,c,d;q% \right)=\left(-\frac{ad}{bc}\right)^{n}\frac{\left(qb,-qbc/d;q\right)_{n}}{% \left(qa,-qad/c;q\right)_{n}}}}} {\displaystyle \bigqJacobiIVparam{n}@{-d/(qb)}{a}{b}{c}{d}{q}=\left(- \frac{ad}{bc}\right)^n \frac{\qPochhammer{qb,-qbc/d}{q}{n}}{\qPochhammer{qa,-qad/c}{q}{n}} }
P n ( c ; a , b , c , d ; q ) = q 1 2 n ( n + 1 ) ( a d c ) n ( - q b c / d ; q ) n ( - q a d / c ; q ) n q-Jacobi-polynomial-four-parameters-P 𝑛 𝑐 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 1 2 𝑛 𝑛 1 superscript 𝑎 𝑑 𝑐 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑐 𝑑 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑑 𝑐 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(c;a,b,c,d;q\right)=q^{% \frac{1}{2}n(n+1)}\left(\frac{ad}{c}\right)^{n}\frac{\left(-qbc/d;q\right)_{n}% }{\left(-qad/c;q\right)_{n}}}}} {\displaystyle \bigqJacobiIVparam{n}@{c}{a}{b}{c}{d}{q}= q^{\frac12 n(n+1)}\left(\frac{ad}c\right)^n \frac{\qPochhammer{-qbc/d}{q}{n}}{\qPochhammer{-qad/c}{q}{n}} }
P n ( - d ; a , b , c , d ; q ) = q 1 2 n ( n + 1 ) ( - a ) n ( q b ; q ) n ( q a ; q ) n q-Jacobi-polynomial-four-parameters-P 𝑛 𝑑 𝑎 𝑏 𝑐 𝑑 𝑞 superscript 𝑞 1 2 𝑛 𝑛 1 superscript 𝑎 𝑛 q-Pochhammer-symbol 𝑞 𝑏 𝑞 𝑛 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑛 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(-d;a,b,c,d;q\right)=q^% {\frac{1}{2}n(n+1)}(-a)^{n}\frac{\left(qb;q\right)_{n}}{\left(qa;q\right)_{n}}% }}} {\displaystyle \bigqJacobiIVparam{n}@{-d}{a}{b}{c}{d}{q}=q^{\frac12 n(n+1)} (-a)^n \frac{\qPochhammer{qb}{q}{n}}{\qPochhammer{qa}{q}{n}} }

Quadratic transformations

P 2 n ( x ; a , a , 1 , 1 ; q ) = p n ( x 2 ; q - 1 , a 2 ; q 2 ) p n ( ( q a ) - 2 ; q - 1 , a 2 ; q 2 ) q-Jacobi-polynomial-four-parameters-P 2 𝑛 𝑥 𝑎 𝑎 1 1 𝑞 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑥 2 superscript 𝑞 1 superscript 𝑎 2 superscript 𝑞 2 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑞 𝑎 2 superscript 𝑞 1 superscript 𝑎 2 superscript 𝑞 2 {\displaystyle{\displaystyle{\displaystyle P_{2n}\!\left(x;a,a,1,1;q\right)=% \frac{p_{n}\!\left(x^{2};q^{-1},a^{2};q^{2}\right)}{p_{n}\!\left((qa)^{-2};q^{% -1},a^{2};q^{2}\right)}}}} {\displaystyle \bigqJacobiIVparam{2n}@{x}{a}{a}{1}{1}{q}=\frac{\littleqJacobi{n}@{x^2}{q^{-1}}{a^2}{q^2}}{\littleqJacobi{n}@{(qa)^{-2}}{q^{-1}}{a^2}{q^2}} }
P 2 n + 1 ( x ; a , a , 1 , 1 ; q ) = q a x p n ( x 2 ; q , a 2 ; q 2 ) p n ( ( q a ) - 2 ; q , a 2 ; q 2 ) q-Jacobi-polynomial-four-parameters-P 2 𝑛 1 𝑥 𝑎 𝑎 1 1 𝑞 𝑞 𝑎 𝑥 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑥 2 𝑞 superscript 𝑎 2 superscript 𝑞 2 little-q-Jacobi-polynomial-p 𝑛 superscript 𝑞 𝑎 2 𝑞 superscript 𝑎 2 superscript 𝑞 2 {\displaystyle{\displaystyle{\displaystyle P_{2n+1}\!\left(x;a,a,1,1;q\right)=% \frac{qaxp_{n}\!\left(x^{2};q,a^{2};q^{2}\right)}{p_{n}\!\left((qa)^{-2};q,a^{% 2};q^{2}\right)}}}} {\displaystyle \bigqJacobiIVparam{2n+1}@{x}{a}{a}{1}{1}{q}=\frac{qax \littleqJacobi{n}@{x^2}{q}{a^2}{q^2}}{\littleqJacobi{n}@{(qa)^{-2}}{q}{a^2}{q^2}} }
P n ( x ; a , a , 1 , 1 ; q ) = ( q a 2 ; q 2 ) n ( q a 2 ; q ) n ( q a x ) n \qHyperrphis 21 @ @ q - n , q - n + 1 q - 2 n + 1 a - 2 q 2 ( a x ) - 2 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑎 1 1 𝑞 q-Pochhammer-symbol 𝑞 superscript 𝑎 2 superscript 𝑞 2 𝑛 q-Pochhammer-symbol 𝑞 superscript 𝑎 2 𝑞 𝑛 superscript 𝑞 𝑎 𝑥 𝑛 \qHyperrphis 21 @ @ superscript 𝑞 𝑛 superscript 𝑞 𝑛 1 superscript 𝑞 2 𝑛 1 superscript 𝑎 2 superscript 𝑞 2 superscript 𝑎 𝑥 2 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,a,1,1;q\right)=% \frac{\left(qa^{2};q^{2}\right)_{n}}{\left(qa^{2};q\right)_{n}}(qax)^{n}% \qHyperrphis{2}{1}@@{q^{-n},q^{-n+1}}{q^{-2n+1}a^{-2}}{q^{2}}{(ax)^{-2}}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{a}{1}{1}{q}=\frac{\qPochhammer{qa^2}{q^2}{n}}{\qPochhammer{qa^2}{q}{n}} (qax)^n \qHyperrphis{2}{1}@@{q^{-n},q^{-n+1}}{q^{-2n+1}a^{-2}}{q^2}{(ax)^{-2}} }
P n ( x ; a , a , 1 , 1 ; q ) = ( q ; q ) n ( q a 2 ; q ) n ( q a ) n k = 0 [ 1 2 n ] ( - 1 ) k q k ( k - 1 ) ( q a 2 ; q 2 ) n - k ( q 2 ; q 2 ) k ( q ; q ) n - 2 k x n - 2 k q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑎 1 1 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 q-Pochhammer-symbol 𝑞 superscript 𝑎 2 𝑞 𝑛 superscript 𝑞 𝑎 𝑛 superscript subscript 𝑘 0 delimited-[] 1 2 𝑛 superscript 1 𝑘 superscript 𝑞 𝑘 𝑘 1 q-Pochhammer-symbol 𝑞 superscript 𝑎 2 superscript 𝑞 2 𝑛 𝑘 q-Pochhammer-symbol superscript 𝑞 2 superscript 𝑞 2 𝑘 q-Pochhammer-symbol 𝑞 𝑞 𝑛 2 𝑘 superscript 𝑥 𝑛 2 𝑘 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(x;a,a,1,1;q\right)=% \frac{\left(q;q\right)_{n}}{\left(qa^{2};q\right)_{n}}(qa)^{n}\sum_{k=0}^{[% \frac{1}{2}n]}(-1)^{k}q^{k(k-1)}\frac{\left(qa^{2};q^{2}\right)_{n-k}}{\left(q% ^{2};q^{2}\right)_{k}\left(q;q\right)_{n-2k}}x^{n-2k}}}} {\displaystyle \bigqJacobiIVparam{n}@{x}{a}{a}{1}{1}{q} =\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{qa^2}{q}{n}} (qa)^n \sum_{k=0}^{[\frac12 n]}(-1)^k q^{k(k-1)} \frac{\qPochhammer{qa^2}{q^2}{n-k}}{\qPochhammer{q^2}{q^2}{k} \qPochhammer{q}{q}{n-2k}} x^{n-2k} }

q-Chebyshev polynomials

U n ( x , q , b ) = ( q - 3 b ) 1 2 n 1 - q n + 1 1 - q P n ( b - 1 2 x ; q 1 2 , q 1 2 , 1 , 1 ; q ) Cigler-q-Chebyshev-polynomial-U 𝑛 𝑥 𝑞 𝑏 superscript superscript 𝑞 3 𝑏 1 2 𝑛 1 superscript 𝑞 𝑛 1 1 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑏 1 2 𝑥 superscript 𝑞 1 2 superscript 𝑞 1 2 1 1 𝑞 {\displaystyle{\displaystyle{\displaystyle U_{n}\!\left(x,q,b\right)=(q^{-3}b)% ^{\frac{1}{2}n}\frac{1-q^{n+1}}{1-q}P_{n}\!\left(b^{-\frac{1}{2}}x;q^{\frac{1}% {2}},q^{\frac{1}{2}},1,1;q\right)}}} {\displaystyle \CiglerqChebyU{n}@{x}{q}{b}=(q^{-3} b)^{\frac12 n} \frac{1-q^{n+1}}{1-q} \bigqJacobiIVparam{n}@{b^{-\frac12}x}{q^\frac12}{q^\frac12}{1}{1}{q} }
T n ( x , s , q ) = ( - s ) 1 2 n P n ( ( - q s ) - 1 2 x ; q - 1 2 , q - 1 2 , 1 , 1 ; q ) Cigler-q-Chebyshev-polynomial-T 𝑛 𝑥 𝑠 𝑞 superscript 𝑠 1 2 𝑛 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑞 𝑠 1 2 𝑥 superscript 𝑞 1 2 superscript 𝑞 1 2 1 1 𝑞 {\displaystyle{\displaystyle{\displaystyle T_{n}\!\left(x,s,q\right)=(-s)^{% \frac{1}{2}n}P_{n}\!\left((-qs)^{-\frac{1}{2}}x;q^{-\frac{1}{2}},q^{-\frac{1}{% 2}},1,1;q\right)}}} {\displaystyle \CiglerqChebyT{n}@{x}{s}{q}=(-s)^{\half n} \bigqJacobiIVparam{n}@{(-qs)^{-\half} x}{q^{-\half}}{q^{-\half}}{1}{1}{q} }
U n ( x , s , q ) = ( - q - 2 s ) 1 2 n 1 - q n + 1 1 - q P n ( ( - q s ) - 1 2 x ; q 1 2 , q 1 2 , 1 , 1 ; q ) Cigler-q-Chebyshev-polynomial-U 𝑛 𝑥 𝑠 𝑞 superscript superscript 𝑞 2 𝑠 1 2 𝑛 1 superscript 𝑞 𝑛 1 1 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑞 𝑠 1 2 𝑥 superscript 𝑞 1 2 superscript 𝑞 1 2 1 1 𝑞 {\displaystyle{\displaystyle{\displaystyle U_{n}\!\left(x,s,q\right)=(-q^{-2}s% )^{\frac{1}{2}n}\frac{1-q^{n+1}}{1-q}P_{n}\!\left((-qs)^{-\frac{1}{2}}x;q^{% \frac{1}{2}},q^{\frac{1}{2}},1,1;q\right)}}} {\displaystyle \CiglerqChebyU{n}@{x}{s}{q}=(-q^{-2}s)^{\half n} \frac{1-q^{n+1}}{1-q} \bigqJacobiIVparam{n}@{(-qs)^{-\half} x}{q^{\half}}{q^{\half}}{1}{1}{q} }

Limit to Discrete q-Hermite I

lim a 0 a - n P n ( x ; a , a , 1 , 1 ; q ) = q n h n ( x ; q ) subscript 𝑎 0 superscript 𝑎 𝑛 q-Jacobi-polynomial-four-parameters-P 𝑛 𝑥 𝑎 𝑎 1 1 𝑞 superscript 𝑞 𝑛 discrete-q-Hermite-polynomial-h-I 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\to 0}a^{-n}P_{n}\!\left(x;a,% a,1,1;q\right)=q^{n}h_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\to0} a^{-n} \bigqJacobiIVparam{n}@{x}{a}{a}{1}{1}{q}=q^n \discrqHermiteI{n}@{x}{q} }

Pseudo big q-Jacobi polynomials

z - q z + q P m ( c x ; c / b , d / a , c / a ; q ) P n ( c x ; c / b , d / a , c / a ; q ) ( a x , b x ; q ) ( c x , d x ; q ) d q x = h n δ m , n ( m , n = 0 , 1 , , N ) fragments subscript subscript 𝑧 superscript 𝑞 subscript 𝑧 superscript 𝑞 big-q-Jacobi-polynomial-P 𝑚 𝑐 𝑥 𝑐 𝑏 𝑑 𝑎 𝑐 𝑎 𝑞 big-q-Jacobi-polynomial-P 𝑛 𝑐 𝑥 𝑐 𝑏 𝑑 𝑎 𝑐 𝑎 𝑞 q-Pochhammer-symbol 𝑎 𝑥 𝑏 𝑥 𝑞 q-Pochhammer-symbol 𝑐 𝑥 𝑑 𝑥 𝑞 subscript 𝑑 𝑞 x subscript 𝑛 Kronecker-delta 𝑚 𝑛 fragments ( m , n 0 , 1 , , N ) {\displaystyle{\displaystyle{\displaystyle\int_{z_{-}q^{\mathbb{Z}}\cup z_{+}q% ^{\mathbb{Z}}}P_{m}\!\left(cx;c/b,d/a,c/a;q\right)P_{n}\!\left(cx;c/b,d/a,c/a;% q\right)\frac{\left(ax,bx;q\right)_{\infty}}{\left(cx,dx;q\right)_{\infty}}d_{% q}x=h_{n}\delta_{m,n}(m,n=0,1,\ldots,N)}}} {\displaystyle \int_{z_- q^\mathbb{Z}\cup z_+ q^\mathbb{Z}}\bigqJacobi{m}@{cx}{c/b}{d/a}{c/a}{q} \bigqJacobi{n}@{cx}{c/b}{d/a}{c/a}{q} \frac{\qPochhammer{ax,bx}{q}{\infty}}{\qPochhammer{cx,dx}{q}{\infty}} d_qx=h_n\Kronecker{m}{n} (m,n=0,1,\ldots,N) }

Substitution(s): h 0 = ( 1 - q ) c ( q , - d / c , - q c / d , q 2 a b ; q ) ( q a , q b , - q b c / d , - q a d / c ; q ) subscript 0 1 𝑞 𝑐 q-Pochhammer-symbol 𝑞 𝑑 𝑐 𝑞 𝑐 𝑑 superscript 𝑞 2 𝑎 𝑏 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑎 𝑑 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)c\frac{\left(q,-d/c,-qc/% d,q^{2}ab;q\right)_{\infty}}{\left(qa,qb,-qbc/d,-qad/c;q\right)_{\infty}}}}} &
h 0 = ( 1 - q ) z + ( q , a / c , a / d , b / c , b / d ; q ) ( a b / ( q c d ) ; q ) θ ( z - / z + , c d z - z + ; q ) θ ( c z - , d z - , c z + , d z + ; q ) subscript 0 1 𝑞 subscript 𝑧 q-Pochhammer-symbol 𝑞 𝑎 𝑐 𝑎 𝑑 𝑏 𝑐 𝑏 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 𝑞 𝑐 𝑑 𝑞 𝜃 subscript 𝑧 subscript 𝑧 𝑐 𝑑 subscript 𝑧 subscript 𝑧 𝑞 𝜃 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)z_{+}\frac{\left(q,a/c,a% /d,b/c,b/d;q\right)_{\infty}}{\left(ab/(qcd);q\right)_{\infty}}\frac{\theta(z_% {-}/z_{+},cdz_{-}z_{+};q)}{\theta(cz_{-},dz_{-},cz_{+},dz_{+};q)}}}}


h 0 = z - q z + q ( a x , b x ; q ) ( c x , d x ; q ) d q x subscript 0 subscript subscript 𝑧 superscript 𝑞 subscript 𝑧 superscript 𝑞 q-Pochhammer-symbol 𝑎 𝑥 𝑏 𝑥 𝑞 q-Pochhammer-symbol 𝑐 𝑥 𝑑 𝑥 𝑞 subscript 𝑑 𝑞 𝑥 {\displaystyle{\displaystyle{\displaystyle h_{0}=\int_{z_{-}q^{\mathbb{Z}}\cup z% _{+}q^{\mathbb{Z}}}\frac{\left(ax,bx;q\right)_{\infty}}{\left(cx,dx;q\right)_{% \infty}}d_{q}x}}} {\displaystyle h_0=\int_{z_- q^\mathbb{Z}\cup z_+ q^\mathbb{Z}}\frac{\qPochhammer{ax,bx}{q}{\infty}}{\qPochhammer{cx,dx}{q}{\infty}} d_qx }

Substitution(s): h 0 = ( 1 - q ) c ( q , - d / c , - q c / d , q 2 a b ; q ) ( q a , q b , - q b c / d , - q a d / c ; q ) subscript 0 1 𝑞 𝑐 q-Pochhammer-symbol 𝑞 𝑑 𝑐 𝑞 𝑐 𝑑 superscript 𝑞 2 𝑎 𝑏 𝑞 q-Pochhammer-symbol 𝑞 𝑎 𝑞 𝑏 𝑞 𝑏 𝑐 𝑑 𝑞 𝑎 𝑑 𝑐 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)c\frac{\left(q,-d/c,-qc/% d,q^{2}ab;q\right)_{\infty}}{\left(qa,qb,-qbc/d,-qad/c;q\right)_{\infty}}}}} &
h 0 = ( 1 - q ) z + ( q , a / c , a / d , b / c , b / d ; q ) ( a b / ( q c d ) ; q ) θ ( z - / z + , c d z - z + ; q ) θ ( c z - , d z - , c z + , d z + ; q ) subscript 0 1 𝑞 subscript 𝑧 q-Pochhammer-symbol 𝑞 𝑎 𝑐 𝑎 𝑑 𝑏 𝑐 𝑏 𝑑 𝑞 q-Pochhammer-symbol 𝑎 𝑏 𝑞 𝑐 𝑑 𝑞 𝜃 subscript 𝑧 subscript 𝑧 𝑐 𝑑 subscript 𝑧 subscript 𝑧 𝑞 𝜃 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑐 subscript 𝑧 𝑑 subscript 𝑧 𝑞 {\displaystyle{\displaystyle{\displaystyle h_{0}=(1-q)z_{+}\frac{\left(q,a/c,a% /d,b/c,b/d;q\right)_{\infty}}{\left(ab/(qcd);q\right)_{\infty}}\frac{\theta(z_% {-}/z_{+},cdz_{-}z_{+};q)}{\theta(cz_{-},dz_{-},cz_{+},dz_{+};q)}}}}


P n ( c x ; c / b , d / a , c / a ; q ) = P n ( - q - 1 a x ; c / b , d / a , - a / b , 1 ; q ) big-q-Jacobi-polynomial-P 𝑛 𝑐 𝑥 𝑐 𝑏 𝑑 𝑎 𝑐 𝑎 𝑞 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑞 1 𝑎 𝑥 𝑐 𝑏 𝑑 𝑎 𝑎 𝑏 1 𝑞 {\displaystyle{\displaystyle{\displaystyle P_{n}\!\left(cx;c/b,d/a,c/a;q\right% )=P_{n}\!\left(-q^{-1}ax;c/b,d/a,-a/b,1;q\right)}}} {\displaystyle \bigqJacobi{n}@{cx}{c/b}{d/a}{c/a}{q}=\bigqJacobiIVparam{n}@{-q^{-1}ax}{c/b}{d/a}{-a/b}{1}{q} }

Pseudo big q-Jacobi \longrightarrow Discrete Hermite II

lim a i n q 1 2 n ( n - 1 ) P n ( q - 1 a - 1 i x ; a , a , 1 , 1 ; q ) = h ~ n ( x ; q ) subscript 𝑎 imaginary-unit 𝑛 superscript 𝑞 1 2 𝑛 𝑛 1 q-Jacobi-polynomial-four-parameters-P 𝑛 superscript 𝑞 1 superscript 𝑎 1 imaginary-unit 𝑥 𝑎 𝑎 1 1 𝑞 discrete-q-Hermite-polynomial-II-h-tilde 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle{\displaystyle\lim_{a\to\infty}{\mathrm{i}^{n}}q^{% \frac{1}{2}n(n-1)}P_{n}\!\left(q^{-1}a^{-1}\mathrm{i}x;a,a,1,1;q\right)=\tilde% {h}_{n}\!\left(x;q\right)}}} {\displaystyle \lim_{a\to\infty}\iunit^n q^{\frac12 n(n-1)} \bigqJacobiIVparam{n}@{q^{-1}a^{-1}\iunit x}{a}{a}{1}{1}{q}= \discrqHermiteII{n}@{x}{q} }

Pseudo big q-Jacobi \longrightarrow Pseudo Jacobi

lim q 1 P n ( i q 1 2 ( - N - 1 + i ν ) x ; - q - N - 1 , - q - N - 1 , q - N + i ν - 1 ; q ) = P n ( x ; ν , N ) P n ( - i ; ν , N ) subscript 𝑞 1 big-q-Jacobi-polynomial-P 𝑛 imaginary-unit superscript 𝑞 1 2 𝑁 1 imaginary-unit 𝜈 𝑥 superscript 𝑞 𝑁 1 superscript 𝑞 𝑁 1 superscript 𝑞 𝑁 imaginary-unit 𝜈 1 𝑞 pseudo-Jacobi-polynomial 𝑛 𝑥 𝜈 𝑁 pseudo-Jacobi-polynomial 𝑛 imaginary-unit 𝜈 𝑁 {\displaystyle{\displaystyle{\displaystyle\lim_{q\uparrow 1}P_{n}\!\left(% \mathrm{i}q^{\frac{1}{2}(-N-1+\mathrm{i}\nu)}x;-q^{-N-1},-q^{-N-1},q^{-N+% \mathrm{i}\nu-1};q\right)=\frac{P_{n}\!\left(x;\nu,N\right)}{P_{n}\!\left(-% \mathrm{i};\nu,N\right)}}}} {\displaystyle \lim_{q\uparrow1}\bigqJacobi{n}@{\iunit q^{\frac12(-N-1+\iunit\nu)}x}{-q^{-N-1}}{-q^{-N-1}}{q^{-N+\iunit\nu-1}}{q} =\frac{\pseudoJacobi{n}@{x}{\nu}{N}}{\pseudoJacobi{n}@{-\iunit}{\nu}{N}} }