Polylogarithms

From DRMF
Revision as of 00:34, 6 March 2017 by imported>SeedBot (DRMF)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Polylogarithms

Dilogarithms

\Dilogarithm @ z = n = 1 z n n 2 \Dilogarithm @ 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 superscript 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}=\sum_{n=1}^{\infty}% \frac{z^{n}}{n^{2}}}}} {\displaystyle \Dilogarithm@{z} = \sum_{n=1}^\infty \frac{z^n}{n^2} }

Constraint(s): | z | 1 𝑧 1 {\displaystyle{\displaystyle{\displaystyle|z|\leq 1}}}


\Dilogarithm @ z = - 0 z t - 1 ln ( 1 - t ) d t \Dilogarithm @ 𝑧 superscript subscript 0 𝑧 superscript 𝑡 1 1 𝑡 𝑡 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}=-\int_{0}^{z}t^{-1}% \ln\left(1-t\right)\mathrm{d}t}}} {\displaystyle \Dilogarithm@{z} = -\int_0^z t^{-1} \ln@{1-t} \diff{t} }

Constraint(s): z \Complex ( 1 , ) 𝑧 \Complex 1 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus(1,\infty)}}}


\Dilogarithm @ z + \Dilogarithm @ z z - 1 = - 1 2 ( ln ( 1 - z ) ) 2 \Dilogarithm @ 𝑧 \Dilogarithm @ 𝑧 𝑧 1 1 2 superscript 1 𝑧 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}+\Dilogarithm@{\frac% {z}{z-1}}=-\frac{1}{2}(\ln\left(1-z\right))^{2}}}} {\displaystyle \Dilogarithm@{z} + \Dilogarithm@{\frac{z}{z-1}} = - \frac{1}{2} (\ln@{1-z})^2 }

Constraint(s): z \Complex [ 1 , ) 𝑧 \Complex 1 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus[1,\infty)}}}


\Dilogarithm @ z + \Dilogarithm @ 1 z = - 1 6 π 2 - 1 2 ( ln ( - z ) ) 2 \Dilogarithm @ 𝑧 \Dilogarithm @ 1 𝑧 1 6 2 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}+\Dilogarithm@{\frac% {1}{z}}=-\frac{1}{6}{\pi^{2}}-\frac{1}{2}(\ln\left(-z\right))^{2}}}} {\displaystyle \Dilogarithm@{z} + \Dilogarithm@{\frac{1}{z}} = - \frac{1}{6} \cpi^2 -\frac{1}{2} (\ln@{-z})^2 }

Constraint(s): z \Complex [ 0 , ) 𝑧 \Complex 0 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus[0,\infty)}}}


\Dilogarithm @ z m = m k = 0 m - 1 \Dilogarithm @ z e 2 π i k / m \Dilogarithm @ superscript 𝑧 𝑚 𝑚 superscript subscript 𝑘 0 𝑚 1 \Dilogarithm @ 𝑧 2 imaginary-unit 𝑘 𝑚 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z^{m}}=m\sum_{k=0}^{m-% 1}\Dilogarithm@{z{\mathrm{e}^{2\pi\mathrm{i}k/m}}}}}} {\displaystyle \Dilogarithm@{z^m} = m \sum_{k=0}^{m-1} \Dilogarithm@{z \expe^{2 \cpi \iunit k/m}} }

Constraint(s): m = 1 , 2 , 3 , 𝑚 1 2 3 {\displaystyle{\displaystyle{\displaystyle m=1,2,3,\dots}}} &
{ z \Complex : | z | < 1 } [ 0 , 1 ) conditional-set 𝑧 \Complex 𝑧 1 0 1 {\displaystyle{\displaystyle{\displaystyle\{z\in\Complex:|z|<1\}\setminus[0,1)% }}}


\Dilogarithm @ x + \Dilogarithm @ 1 - x = 1 6 π 2 - ( ln x ) ln ( 1 - x ) \Dilogarithm @ 𝑥 \Dilogarithm @ 1 𝑥 1 6 2 𝑥 1 𝑥 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{x}+\Dilogarithm@{1-x}=% \frac{1}{6}{\pi^{2}}-(\ln x)\ln\left(1-x\right)}}} {\displaystyle \Dilogarithm@{x} + \Dilogarithm@{1-x} = \frac{1}{6} \cpi^2 - (\ln x) \ln@{1-x} }

Constraint(s): 0 < x < 1 0 𝑥 1 {\displaystyle{\displaystyle{\displaystyle 0<x<1}}}


\Dilogarithm @ e i θ = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 \Dilogarithm @ imaginary-unit 𝜃 superscript subscript 𝑛 1 𝑛 𝜃 superscript 𝑛 2 imaginary-unit superscript subscript 𝑛 1 𝑛 𝜃 superscript 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{{\mathrm{e}^{\mathrm{i% }\theta}}}=\sum_{n=1}^{\infty}\frac{\cos\left(n\theta\right)}{n^{2}}+\mathrm{i% }\sum_{n=1}^{\infty}\frac{\sin\left(n\theta\right)}{n^{2}}}}} {\displaystyle \Dilogarithm@{\expe^{\iunit\theta}} = \sum_{n=1}^\infty \frac{\cos@{n \theta}}{n^2} + \iunit \sum_{n=1}^\infty \frac{\sin@{n \theta}}{n^2} }

Constraint(s): 0 θ 2 π 0 𝜃 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


n = 1 cos ( n θ ) n 2 = π 2 6 - π θ 2 + θ 2 4 superscript subscript 𝑛 1 𝑛 𝜃 superscript 𝑛 2 2 6 𝜃 2 superscript 𝜃 2 4 {\displaystyle{\displaystyle{\displaystyle\sum_{n=1}^{\infty}\frac{\cos\left(n% \theta\right)}{n^{2}}=\frac{{\pi^{2}}}{6}-\frac{\pi\theta}{2}+\frac{\theta^{2}% }{4}}}} {\displaystyle \sum_{n \hiderel{=} 1}^\infty \frac{\cos@{n \theta}}{n^2} = \frac{\cpi^2}{6} - \frac{\cpi \theta}{2} + \frac{\theta^2}{4} }

Constraint(s): 0 θ 2 π 0 𝜃 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


n = 1 sin ( n θ ) n 2 = - 0 θ ln ( 2 sin ( 1 2 x ) ) d x superscript subscript 𝑛 1 𝑛 𝜃 superscript 𝑛 2 superscript subscript 0 𝜃 2 1 2 𝑥 𝑥 {\displaystyle{\displaystyle{\displaystyle\sum_{n=1}^{\infty}\frac{\sin\left(n% \theta\right)}{n^{2}}=-\int_{0}^{\theta}\ln\left(2\sin\left(\tfrac{1}{2}x% \right)\right)\mathrm{d}x}}} {\displaystyle \sum_{n \hiderel{=} 1}^\infty \frac{\sin@{n \theta}}{n^2} = - \int_0^\theta \ln@{2 \sin@{\tfrac{1}{2} x}} \diff{x} }

Constraint(s): 0 θ 2 π 0 𝜃 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


Polylogarithms

\Polylogarithm s @ z = n = 1 z n n s \Polylogarithm 𝑠 @ 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\sum_{n=1}^{% \infty}\frac{z^{n}}{n^{s}}}}} {\displaystyle \Polylogarithm{s}@{z} = \sum_{n=1}^\infty \frac{z^n}{n^s} }

Constraint(s): real or complex s 𝑠 {\displaystyle{\displaystyle{\displaystyle s}}} and z 𝑧 {\displaystyle{\displaystyle{\displaystyle z}}}


Integral Representation

\Polylogarithm s @ z = z Γ ( s ) 0 x s - 1 e x - z d x \Polylogarithm 𝑠 @ 𝑧 𝑧 Euler-Gamma 𝑠 superscript subscript 0 superscript 𝑥 𝑠 1 𝑥 𝑧 𝑥 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\frac{z}{% \Gamma\left(s\right)}\int_{0}^{\infty}\frac{x^{s-1}}{{\mathrm{e}^{x}}-z}% \mathrm{d}x}}} {\displaystyle \Polylogarithm{s}@{z} = \frac{z}{\EulerGamma@{s}} \int_0^\infty \frac{x^{s-1}}{\expe^x - z} \diff{x} }

Constraint(s): s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}} and | \ph @ 1 - z | < π \ph @ 1 𝑧 {\displaystyle{\displaystyle{\displaystyle\left|\ph@{1-z}\right|<\pi}}} , or s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} and z = 1 𝑧 1 {\displaystyle{\displaystyle{\displaystyle z=1}}}


\Polylogarithm s @ z = Γ ( 1 - s ) ( ln 1 z ) s - 1 + n = 0 \RiemannZeta @ s - n ( ln z ) n n ! \Polylogarithm 𝑠 @ 𝑧 Euler-Gamma 1 𝑠 superscript 1 𝑧 𝑠 1 superscript subscript 𝑛 0 \RiemannZeta @ 𝑠 𝑛 superscript 𝑧 𝑛 𝑛 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\Gamma\left(1-% s\right)\left(\ln\frac{1}{z}\right)^{s-1}+\sum_{n=0}^{\infty}\RiemannZeta@{s-n% }\frac{(\ln z)^{n}}{n!}}}} {\displaystyle \Polylogarithm{s}@{z} = \EulerGamma@{1-s} \left( \ln@@{\frac{1}{z}} \right)^{s-1} + \sum_{n=0}^\infty \RiemannZeta@{s-n} \frac{(\ln@@{z})^n}{n!} }

Constraint(s): s 1 , 2 , 3 , 𝑠 1 2 3 {\displaystyle{\displaystyle{\displaystyle s\neq 1,2,3,\dots}}} &
| ln z | < 2 π 𝑧 2 {\displaystyle{\displaystyle{\displaystyle|\ln z|<2\pi}}}


\Polylogarithm s @ e 2 π i a + e π i s \Polylogarithm s @ e - 2 π i a = ( 2 π ) s e π i s / 2 Γ ( s ) \HurwitzZeta @ 1 - s a \Polylogarithm 𝑠 @ 2 imaginary-unit 𝑎 imaginary-unit 𝑠 \Polylogarithm 𝑠 @ 2 imaginary-unit 𝑎 superscript 2 𝑠 imaginary-unit 𝑠 2 Euler-Gamma 𝑠 \HurwitzZeta @ 1 𝑠 𝑎 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{{\mathrm{e}^{2\pi% \mathrm{i}a}}}+{\mathrm{e}^{\pi\mathrm{i}s}}\Polylogarithm{s}@{{\mathrm{e}^{-2% \pi\mathrm{i}a}}}=\frac{(2\pi)^{s}{\mathrm{e}^{\pi\mathrm{i}s/2}}}{\Gamma\left% (s\right)}\HurwitzZeta@{1-s}{a}}}} {\displaystyle \Polylogarithm{s}@{\expe^{2 \cpi \iunit a}} + \expe^{\cpi \iunit s} \Polylogarithm{s}@{\expe^{-2 \cpi \iunit a}} = \frac{(2 \cpi)^s \expe^{\cpi \iunit s/2}}{\EulerGamma@{s}} \HurwitzZeta@{1-s}{a} }

Constraint(s): s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}} , a > 0 𝑎 0 {\displaystyle{\displaystyle{\displaystyle\Im{a}>0}}} or s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} , a = 0 𝑎 0 {\displaystyle{\displaystyle{\displaystyle\Im{a}=0}}}


Fermi-Dirac and Bose-Einstein Integrals

F s ( x ) = 1 Γ ( s + 1 ) 0 t s e t - x + 1 d t subscript 𝐹 𝑠 𝑥 1 Euler-Gamma 𝑠 1 superscript subscript 0 superscript 𝑡 𝑠 𝑡 𝑥 1 𝑡 {\displaystyle{\displaystyle{\displaystyle F_{s}(x)=\frac{1}{\Gamma\left(s+1% \right)}\int_{0}^{\infty}\frac{t^{s}}{{\mathrm{e}^{t-x}}+1}\mathrm{d}t}}} {\displaystyle F_s(x) = \frac{1}{\EulerGamma@{s+1}} \int_0^\infty \frac{t^s}{\expe^{t-x}+1} \diff{t} }

Constraint(s): s > - 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle s>-1}}}


This formula has the name: Fermi-Dirac integral


G s ( x ) = 1 Γ ( s + 1 ) 0 t s e t - x - 1 d t subscript 𝐺 𝑠 𝑥 1 Euler-Gamma 𝑠 1 superscript subscript 0 superscript 𝑡 𝑠 𝑡 𝑥 1 𝑡 {\displaystyle{\displaystyle{\displaystyle G_{s}(x)=\frac{1}{\Gamma\left(s+1% \right)}\int_{0}^{\infty}\frac{t^{s}}{{\mathrm{e}^{t-x}}-1}\mathrm{d}t}}} {\displaystyle G_s(x) = \frac{1}{\EulerGamma@{s+1}} \int_0^\infty \frac{t^s}{\expe^{t-x}-1} \diff{t} }

Constraint(s): s > - 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle s>-1}}} , x < 0 𝑥 0 {\displaystyle{\displaystyle{\displaystyle x<0}}} , or s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle s>0}}} , x 0 𝑥 0 {\displaystyle{\displaystyle{\displaystyle x\leq 0}}}


This formula has the name: Bose-Einstein integral


F s ( x ) = - \Polylogarithm s + 1 @ - e x subscript 𝐹 𝑠 𝑥 \Polylogarithm 𝑠 1 @ 𝑥 {\displaystyle{\displaystyle{\displaystyle F_{s}(x)=-\Polylogarithm{s+1}@{-{% \mathrm{e}^{x}}}}}} {\displaystyle F_s(x) = -\Polylogarithm{s+1}@{-\expe^x} }
G s ( x ) = \Polylogarithm s + 1 @ e x subscript 𝐺 𝑠 𝑥 \Polylogarithm 𝑠 1 @ 𝑥 {\displaystyle{\displaystyle{\displaystyle G_{s}(x)=\Polylogarithm{s+1}@{{% \mathrm{e}^{x}}}}}} {\displaystyle G_s(x) = \Polylogarithm{s+1}@{\expe^x} }