Polylogarithms

From DRMF
Jump to navigation Jump to search

Polylogarithms

Dilogarithms

\Dilogarithm ⁒ @ ⁒ z = βˆ‘ n = 1 ∞ z n n 2 \Dilogarithm @ 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 superscript 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}=\sum_{n=1}^{\infty}% \frac{z^{n}}{n^{2}}}}} {\displaystyle \Dilogarithm@{z} = \sum_{n=1}^\infty \frac{z^n}{n^2} }

Constraint(s): | z | ≀ 1 𝑧 1 {\displaystyle{\displaystyle{\displaystyle|z|\leq 1}}}


\Dilogarithm ⁒ @ ⁒ z = - ∫ 0 z t - 1 ⁒ ln ⁑ ( 1 - t ) ⁒ d t \Dilogarithm @ 𝑧 superscript subscript 0 𝑧 superscript 𝑑 1 1 𝑑 𝑑 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}=-\int_{0}^{z}t^{-1}% \ln\left(1-t\right)\mathrm{d}t}}} {\displaystyle \Dilogarithm@{z} = -\int_0^z t^{-1} \ln@{1-t} \diff{t} }

Constraint(s): z ∈ \Complex βˆ– ( 1 , ∞ ) 𝑧 \Complex 1 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus(1,\infty)}}}


\Dilogarithm ⁒ @ ⁒ z + \Dilogarithm ⁒ @ ⁒ z z - 1 = - 1 2 ⁒ ( ln ⁑ ( 1 - z ) ) 2 \Dilogarithm @ 𝑧 \Dilogarithm @ 𝑧 𝑧 1 1 2 superscript 1 𝑧 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}+\Dilogarithm@{\frac% {z}{z-1}}=-\frac{1}{2}(\ln\left(1-z\right))^{2}}}} {\displaystyle \Dilogarithm@{z} + \Dilogarithm@{\frac{z}{z-1}} = - \frac{1}{2} (\ln@{1-z})^2 }

Constraint(s): z ∈ \Complex βˆ– [ 1 , ∞ ) 𝑧 \Complex 1 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus[1,\infty)}}}


\Dilogarithm ⁒ @ ⁒ z + \Dilogarithm ⁒ @ ⁒ 1 z = - 1 6 ⁒ Ο€ 2 - 1 2 ⁒ ( ln ⁑ ( - z ) ) 2 \Dilogarithm @ 𝑧 \Dilogarithm @ 1 𝑧 1 6 2 1 2 superscript 𝑧 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z}+\Dilogarithm@{\frac% {1}{z}}=-\frac{1}{6}{\pi^{2}}-\frac{1}{2}(\ln\left(-z\right))^{2}}}} {\displaystyle \Dilogarithm@{z} + \Dilogarithm@{\frac{1}{z}} = - \frac{1}{6} \cpi^2 -\frac{1}{2} (\ln@{-z})^2 }

Constraint(s): z ∈ \Complex βˆ– [ 0 , ∞ ) 𝑧 \Complex 0 {\displaystyle{\displaystyle{\displaystyle z\in\Complex\setminus[0,\infty)}}}


\Dilogarithm ⁒ @ ⁒ z m = m ⁒ βˆ‘ k = 0 m - 1 \Dilogarithm ⁒ @ ⁒ z ⁒ e 2 ⁒ Ο€ ⁒ i ⁒ k / m \Dilogarithm @ superscript 𝑧 π‘š π‘š superscript subscript π‘˜ 0 π‘š 1 \Dilogarithm @ 𝑧 2 imaginary-unit π‘˜ π‘š {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{z^{m}}=m\sum_{k=0}^{m-% 1}\Dilogarithm@{z{\mathrm{e}^{2\pi\mathrm{i}k/m}}}}}} {\displaystyle \Dilogarithm@{z^m} = m \sum_{k=0}^{m-1} \Dilogarithm@{z \expe^{2 \cpi \iunit k/m}} }

Constraint(s): m = 1 , 2 , 3 , … π‘š 1 2 3 … {\displaystyle{\displaystyle{\displaystyle m=1,2,3,\dots}}} &
{ z ∈ \Complex : | z | < 1 } βˆ– [ 0 , 1 ) conditional-set 𝑧 \Complex 𝑧 1 0 1 {\displaystyle{\displaystyle{\displaystyle\{z\in\Complex:|z|<1\}\setminus[0,1)% }}}


\Dilogarithm ⁒ @ ⁒ x + \Dilogarithm ⁒ @ ⁒ 1 - x = 1 6 ⁒ Ο€ 2 - ( ln ⁑ x ) ⁒ ln ⁑ ( 1 - x ) \Dilogarithm @ π‘₯ \Dilogarithm @ 1 π‘₯ 1 6 2 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{x}+\Dilogarithm@{1-x}=% \frac{1}{6}{\pi^{2}}-(\ln x)\ln\left(1-x\right)}}} {\displaystyle \Dilogarithm@{x} + \Dilogarithm@{1-x} = \frac{1}{6} \cpi^2 - (\ln x) \ln@{1-x} }

Constraint(s): 0 < x < 1 0 π‘₯ 1 {\displaystyle{\displaystyle{\displaystyle 0<x<1}}}


\Dilogarithm ⁒ @ ⁒ e i ⁒ ΞΈ = βˆ‘ n = 1 ∞ cos ⁑ ( n ⁒ ΞΈ ) n 2 + i ⁒ βˆ‘ n = 1 ∞ sin ⁑ ( n ⁒ ΞΈ ) n 2 \Dilogarithm @ imaginary-unit πœƒ superscript subscript 𝑛 1 𝑛 πœƒ superscript 𝑛 2 imaginary-unit superscript subscript 𝑛 1 𝑛 πœƒ superscript 𝑛 2 {\displaystyle{\displaystyle{\displaystyle\Dilogarithm@{{\mathrm{e}^{\mathrm{i% }\theta}}}=\sum_{n=1}^{\infty}\frac{\cos\left(n\theta\right)}{n^{2}}+\mathrm{i% }\sum_{n=1}^{\infty}\frac{\sin\left(n\theta\right)}{n^{2}}}}} {\displaystyle \Dilogarithm@{\expe^{\iunit\theta}} = \sum_{n=1}^\infty \frac{\cos@{n \theta}}{n^2} + \iunit \sum_{n=1}^\infty \frac{\sin@{n \theta}}{n^2} }

Constraint(s): 0 ≀ ΞΈ ≀ 2 ⁒ Ο€ 0 πœƒ 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


βˆ‘ n = 1 ∞ cos ⁑ ( n ⁒ ΞΈ ) n 2 = Ο€ 2 6 - Ο€ ⁒ ΞΈ 2 + ΞΈ 2 4 superscript subscript 𝑛 1 𝑛 πœƒ superscript 𝑛 2 2 6 πœƒ 2 superscript πœƒ 2 4 {\displaystyle{\displaystyle{\displaystyle\sum_{n=1}^{\infty}\frac{\cos\left(n% \theta\right)}{n^{2}}=\frac{{\pi^{2}}}{6}-\frac{\pi\theta}{2}+\frac{\theta^{2}% }{4}}}} {\displaystyle \sum_{n \hiderel{=} 1}^\infty \frac{\cos@{n \theta}}{n^2} = \frac{\cpi^2}{6} - \frac{\cpi \theta}{2} + \frac{\theta^2}{4} }

Constraint(s): 0 ≀ ΞΈ ≀ 2 ⁒ Ο€ 0 πœƒ 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


βˆ‘ n = 1 ∞ sin ⁑ ( n ⁒ ΞΈ ) n 2 = - ∫ 0 ΞΈ ln ⁑ ( 2 ⁒ sin ⁑ ( 1 2 ⁒ x ) ) ⁒ d x superscript subscript 𝑛 1 𝑛 πœƒ superscript 𝑛 2 superscript subscript 0 πœƒ 2 1 2 π‘₯ π‘₯ {\displaystyle{\displaystyle{\displaystyle\sum_{n=1}^{\infty}\frac{\sin\left(n% \theta\right)}{n^{2}}=-\int_{0}^{\theta}\ln\left(2\sin\left(\tfrac{1}{2}x% \right)\right)\mathrm{d}x}}} {\displaystyle \sum_{n \hiderel{=} 1}^\infty \frac{\sin@{n \theta}}{n^2} = - \int_0^\theta \ln@{2 \sin@{\tfrac{1}{2} x}} \diff{x} }

Constraint(s): 0 ≀ ΞΈ ≀ 2 ⁒ Ο€ 0 πœƒ 2 {\displaystyle{\displaystyle{\displaystyle 0\leq\theta\leq 2\pi}}}


Polylogarithms

\Polylogarithm ⁒ s ⁒ @ ⁒ z = βˆ‘ n = 1 ∞ z n n s \Polylogarithm 𝑠 @ 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\sum_{n=1}^{% \infty}\frac{z^{n}}{n^{s}}}}} {\displaystyle \Polylogarithm{s}@{z} = \sum_{n=1}^\infty \frac{z^n}{n^s} }

Constraint(s): real or complex s 𝑠 {\displaystyle{\displaystyle{\displaystyle s}}} and z 𝑧 {\displaystyle{\displaystyle{\displaystyle z}}}


Integral Representation

\Polylogarithm ⁒ s ⁒ @ ⁒ z = z Ξ“ ⁑ ( s ) ⁒ ∫ 0 ∞ x s - 1 e x - z ⁒ d x \Polylogarithm 𝑠 @ 𝑧 𝑧 Euler-Gamma 𝑠 superscript subscript 0 superscript π‘₯ 𝑠 1 π‘₯ 𝑧 π‘₯ {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\frac{z}{% \Gamma\left(s\right)}\int_{0}^{\infty}\frac{x^{s-1}}{{\mathrm{e}^{x}}-z}% \mathrm{d}x}}} {\displaystyle \Polylogarithm{s}@{z} = \frac{z}{\EulerGamma@{s}} \int_0^\infty \frac{x^{s-1}}{\expe^x - z} \diff{x} }

Constraint(s): β„œ ⁑ s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}} and | \ph ⁒ @ ⁒ 1 - z | < Ο€ \ph @ 1 𝑧 {\displaystyle{\displaystyle{\displaystyle\left|\ph@{1-z}\right|<\pi}}} , or β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} and z = 1 𝑧 1 {\displaystyle{\displaystyle{\displaystyle z=1}}}


\Polylogarithm ⁒ s ⁒ @ ⁒ z = Ξ“ ⁑ ( 1 - s ) ⁒ ( ln ⁑ 1 z ) s - 1 + βˆ‘ n = 0 ∞ \RiemannZeta ⁒ @ ⁒ s - n ⁒ ( ln ⁑ z ) n n ! \Polylogarithm 𝑠 @ 𝑧 Euler-Gamma 1 𝑠 superscript 1 𝑧 𝑠 1 superscript subscript 𝑛 0 \RiemannZeta @ 𝑠 𝑛 superscript 𝑧 𝑛 𝑛 {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{z}=\Gamma\left(1-% s\right)\left(\ln\frac{1}{z}\right)^{s-1}+\sum_{n=0}^{\infty}\RiemannZeta@{s-n% }\frac{(\ln z)^{n}}{n!}}}} {\displaystyle \Polylogarithm{s}@{z} = \EulerGamma@{1-s} \left( \ln@@{\frac{1}{z}} \right)^{s-1} + \sum_{n=0}^\infty \RiemannZeta@{s-n} \frac{(\ln@@{z})^n}{n!} }

Constraint(s): s β‰  1 , 2 , 3 , … 𝑠 1 2 3 … {\displaystyle{\displaystyle{\displaystyle s\neq 1,2,3,\dots}}} &
| ln ⁑ z | < 2 ⁒ Ο€ 𝑧 2 {\displaystyle{\displaystyle{\displaystyle|\ln z|<2\pi}}}


\Polylogarithm ⁒ s ⁒ @ ⁒ e 2 ⁒ Ο€ ⁒ i ⁒ a + e Ο€ ⁒ i ⁒ s ⁒ \Polylogarithm ⁒ s ⁒ @ ⁒ e - 2 ⁒ Ο€ ⁒ i ⁒ a = ( 2 ⁒ Ο€ ) s ⁒ e Ο€ ⁒ i ⁒ s / 2 Ξ“ ⁑ ( s ) ⁒ \HurwitzZeta ⁒ @ ⁒ 1 - s ⁒ a \Polylogarithm 𝑠 @ 2 imaginary-unit π‘Ž imaginary-unit 𝑠 \Polylogarithm 𝑠 @ 2 imaginary-unit π‘Ž superscript 2 𝑠 imaginary-unit 𝑠 2 Euler-Gamma 𝑠 \HurwitzZeta @ 1 𝑠 π‘Ž {\displaystyle{\displaystyle{\displaystyle\Polylogarithm{s}@{{\mathrm{e}^{2\pi% \mathrm{i}a}}}+{\mathrm{e}^{\pi\mathrm{i}s}}\Polylogarithm{s}@{{\mathrm{e}^{-2% \pi\mathrm{i}a}}}=\frac{(2\pi)^{s}{\mathrm{e}^{\pi\mathrm{i}s/2}}}{\Gamma\left% (s\right)}\HurwitzZeta@{1-s}{a}}}} {\displaystyle \Polylogarithm{s}@{\expe^{2 \cpi \iunit a}} + \expe^{\cpi \iunit s} \Polylogarithm{s}@{\expe^{-2 \cpi \iunit a}} = \frac{(2 \cpi)^s \expe^{\cpi \iunit s/2}}{\EulerGamma@{s}} \HurwitzZeta@{1-s}{a} }

Constraint(s): β„œ ⁑ s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}} , β„‘ ⁑ a > 0 π‘Ž 0 {\displaystyle{\displaystyle{\displaystyle\Im{a}>0}}} or β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} , β„‘ ⁑ a = 0 π‘Ž 0 {\displaystyle{\displaystyle{\displaystyle\Im{a}=0}}}


Fermi-Dirac and Bose-Einstein Integrals

F s ⁒ ( x ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ ∫ 0 ∞ t s e t - x + 1 ⁒ d t subscript 𝐹 𝑠 π‘₯ 1 Euler-Gamma 𝑠 1 superscript subscript 0 superscript 𝑑 𝑠 𝑑 π‘₯ 1 𝑑 {\displaystyle{\displaystyle{\displaystyle F_{s}(x)=\frac{1}{\Gamma\left(s+1% \right)}\int_{0}^{\infty}\frac{t^{s}}{{\mathrm{e}^{t-x}}+1}\mathrm{d}t}}} {\displaystyle F_s(x) = \frac{1}{\EulerGamma@{s+1}} \int_0^\infty \frac{t^s}{\expe^{t-x}+1} \diff{t} }

Constraint(s): s > - 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle s>-1}}}


This formula has the name: Fermi-Dirac integral


G s ⁒ ( x ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ ∫ 0 ∞ t s e t - x - 1 ⁒ d t subscript 𝐺 𝑠 π‘₯ 1 Euler-Gamma 𝑠 1 superscript subscript 0 superscript 𝑑 𝑠 𝑑 π‘₯ 1 𝑑 {\displaystyle{\displaystyle{\displaystyle G_{s}(x)=\frac{1}{\Gamma\left(s+1% \right)}\int_{0}^{\infty}\frac{t^{s}}{{\mathrm{e}^{t-x}}-1}\mathrm{d}t}}} {\displaystyle G_s(x) = \frac{1}{\EulerGamma@{s+1}} \int_0^\infty \frac{t^s}{\expe^{t-x}-1} \diff{t} }

Constraint(s): s > - 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle s>-1}}} , x < 0 π‘₯ 0 {\displaystyle{\displaystyle{\displaystyle x<0}}} , or s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle s>0}}} , x ≀ 0 π‘₯ 0 {\displaystyle{\displaystyle{\displaystyle x\leq 0}}}


This formula has the name: Bose-Einstein integral


F s ⁒ ( x ) = - \Polylogarithm ⁒ s + 1 ⁒ @ - e x subscript 𝐹 𝑠 π‘₯ \Polylogarithm 𝑠 1 @ π‘₯ {\displaystyle{\displaystyle{\displaystyle F_{s}(x)=-\Polylogarithm{s+1}@{-{% \mathrm{e}^{x}}}}}} {\displaystyle F_s(x) = -\Polylogarithm{s+1}@{-\expe^x} }
G s ⁒ ( x ) = \Polylogarithm ⁒ s + 1 ⁒ @ ⁒ e x subscript 𝐺 𝑠 π‘₯ \Polylogarithm 𝑠 1 @ π‘₯ {\displaystyle{\displaystyle{\displaystyle G_{s}(x)=\Polylogarithm{s+1}@{{% \mathrm{e}^{x}}}}}} {\displaystyle G_s(x) = \Polylogarithm{s+1}@{\expe^x} }