# Results of Elementary Functions

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.2.E8 ${\displaystyle{\displaystyle\operatorname{log}_{a}z=\ifrac{\ln z}{\ln a}}}$ log[a](z)=(ln(z))/(ln(a)) Log[a,z]=Divide[Log[z],Log[a]] Successful Successful - -
4.2.E9 ${\displaystyle{\displaystyle\operatorname{log}_{a}z=\frac{\operatorname{log}_{% b}z}{\operatorname{log}_{b}a}}}$ log[a](z)=(log[b](z))/(log[b](a)) Log[a,z]=Divide[Log[b,z],Log[b,a]] Successful Successful - -
4.2.E10 ${\displaystyle{\displaystyle\operatorname{log}_{a}b=\frac{1}{\operatorname{log% }_{b}a}}}$ log[a](b)=(1)/(log[b](a)) Log[a,b]=Divide[1,Log[b,a]] Successful Successful - -
4.2.E12 ${\displaystyle{\displaystyle\ln e=1}}$ ln(exp(1))= 1 Log[E]= 1 Successful Successful - -
4.2.E13 ${\displaystyle{\displaystyle\int_{1}^{e}\frac{\mathrm{d}t}{t}=1}}$ int((1)/(t), t = 1..exp(1))= 1 Integrate[Divide[1,t], {t, 1, E}]= 1 Successful Successful - -
4.2.E14 ${\displaystyle{\displaystyle\operatorname{log}_{e}z=\ln z}}$ log[exp(1)](z)= ln(z) Log[E,z]= Log[z] Successful Successful - -
4.2.E15 ${\displaystyle{\displaystyle\operatorname{log}_{10}z=\ifrac{(\ln z)}{(\ln 10)}}}$ log[10](z)=(ln(z))/(ln(10)) Log[10,z]=Divide[Log[z],Log[10]] Successful Successful - -
4.2.E15 ${\displaystyle{\displaystyle\ifrac{(\ln z)}{(\ln 10)}=(\operatorname{log}_{10}% e)\ln z}}$ (ln(z))/(ln(10))=(log[10](exp(1)))* ln(z) Divide[Log[z],Log[10]]=(Log[10,E])* Log[z] Successful Successful - -
4.2.E16 ${\displaystyle{\displaystyle\ln z=(\ln 10)\operatorname{log}_{10}z}}$ ln(z)=(ln(10))* log[10](z) Log[z]=(Log[10])* Log[10,z] Successful Successful - -
4.2.E20 ${\displaystyle{\displaystyle\exp\left(z+2\pi i\right)=\exp z}}$ exp(z + 2*Pi*I)= exp(z) Exp[z + 2*Pi*I]= Exp[z] Successful Successful - -
4.2.E21 ${\displaystyle{\displaystyle\exp\left(-z\right)=1/\exp\left(z\right)}}$ exp(- z)= 1/ exp(z) Exp[- z]= 1/ Exp[z] Successful Successful - -
4.2.E22 ${\displaystyle{\displaystyle|\exp z|=\exp\left(\Re z\right)}}$ abs(exp(z))= exp(Re(z)) Abs[Exp[z]]= Exp[Re[z]] Successful Successful - -
4.2.E23 ${\displaystyle{\displaystyle\operatorname{ph}\left(\exp z\right)=\Im z+2k\pi}}$ argument(exp(z))= Im(z)+ 2*k*Pi Arg[Exp[z]]= Im[z]+ 2*k*Pi Failure Failure
Fail
-18.84955592 <- {z = 2^(1/2)+I*2^(1/2), k = 3}
-18.84955592 <- {z = 2^(1/2)-I*2^(1/2), k = 3}
-18.84955592 <- {z = -2^(1/2)-I*2^(1/2), k = 3}
-18.84955592 <- {z = -2^(1/2)+I*2^(1/2), k = 3}
Fail
-18.84955592153876 <- {Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-18.84955592153876 <- {Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
-18.84955592153876 <- {Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
-18.84955592153876 <- {Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.2.E24 ${\displaystyle{\displaystyle\exp z=e^{x}\cos y+ie^{x}\sin y}}$ exp(z)= exp(x)*cos(y)+ I*exp(x)*sin(y) Exp[z]= Exp[x]*Cos[y]+ I*Exp[x]*Sin[y] Failure Failure
Fail
-.8272584772+1.775573363*I <- {z = 2^(1/2)+I*2^(1/2), x = 1, y = 1}
1.772639846+1.591201978*I <- {z = 2^(1/2)+I*2^(1/2), x = 1, y = 2}
3.332514076+3.679324696*I <- {z = 2^(1/2)+I*2^(1/2), x = 1, y = 3}
-3.350888586-2.154747662*I <- {z = 2^(1/2)+I*2^(1/2), x = 2, y = 1}
3.716367783-2.655921047*I <- {z = 2^(1/2)+I*2^(1/2), x = 2, y = 2}
7.956545558+3.020184993*I <- {z = 2^(1/2)+I*2^(1/2), x = 2, y = 3}
-10.21082645-12.83846788*I <- {z = 2^(1/2)+I*2^(1/2), x = 3, y = 1}
8.999968112-14.20079839*I <- {z = 2^(1/2)+I*2^(1/2), x = 3, y = 2}
20.52596630+1.228457517*I <- {z = 2^(1/2)+I*2^(1/2), x = 3, y = 3}
-.8272584772-6.350283937*I <- {z = 2^(1/2)-I*2^(1/2), x = 1, y = 1}
1.772639846-6.534655322*I <- {z = 2^(1/2)-I*2^(1/2), x = 1, y = 2}
3.332514076-4.446532604*I <- {z = 2^(1/2)-I*2^(1/2), x = 1, y = 3}
-3.350888586-10.28060496*I <- {z = 2^(1/2)-I*2^(1/2), x = 2, y = 1}
3.716367783-10.78177835*I <- {z = 2^(1/2)-I*2^(1/2), x = 2, y = 2}
7.956545558-5.105672307*I <- {z = 2^(1/2)-I*2^(1/2), x = 2, y = 3}
-10.21082645-20.96432518*I <- {z = 2^(1/2)-I*2^(1/2), x = 3, y = 1}
8.999968112-22.32665569*I <- {z = 2^(1/2)-I*2^(1/2), x = 3, y = 2}
20.52596630-6.897399783*I <- {z = 2^(1/2)-I*2^(1/2), x = 3, y = 3}
-1.430781418-2.527497718*I <- {z = -2^(1/2)-I*2^(1/2), x = 1, y = 1}
1.169116905-2.711869103*I <- {z = -2^(1/2)-I*2^(1/2), x = 1, y = 2}
2.728991135-.6237463849*I <- {z = -2^(1/2)-I*2^(1/2), x = 1, y = 3}
-3.954411527-6.457818743*I <- {z = -2^(1/2)-I*2^(1/2), x = 2, y = 1}
3.112844842-6.958992128*I <- {z = -2^(1/2)-I*2^(1/2), x = 2, y = 2}
7.353022617-1.282886088*I <- {z = -2^(1/2)-I*2^(1/2), x = 2, y = 3}
-10.81434939-17.14153896*I <- {z = -2^(1/2)-I*2^(1/2), x = 3, y = 1}
8.396445171-18.50386947*I <- {z = -2^(1/2)-I*2^(1/2), x = 3, y = 2}
19.92244336-3.074613564*I <- {z = -2^(1/2)-I*2^(1/2), x = 3, y = 3}
-1.430781418-2.047212856*I <- {z = -2^(1/2)+I*2^(1/2), x = 1, y = 1}
1.169116905-2.231584241*I <- {z = -2^(1/2)+I*2^(1/2), x = 1, y = 2}
2.728991135-.1434615223*I <- {z = -2^(1/2)+I*2^(1/2), x = 1, y = 3}
-3.954411527-5.977533881*I <- {z = -2^(1/2)+I*2^(1/2), x = 2, y = 1}
3.112844842-6.478707266*I <- {z = -2^(1/2)+I*2^(1/2), x = 2, y = 2}
7.353022617-.8026012257*I <- {z = -2^(1/2)+I*2^(1/2), x = 2, y = 3}
-10.81434939-16.66125410*I <- {z = -2^(1/2)+I*2^(1/2), x = 3, y = 1}
8.396445171-18.02358461*I <- {z = -2^(1/2)+I*2^(1/2), x = 3, y = 2}
19.92244336-2.594328702*I <- {z = -2^(1/2)+I*2^(1/2), x = 3, y = 3}
Fail
Complex[-0.8272584783533998, 1.7755733643246545] <- {Rule[x, 1], Rule[y, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.7726398453192989, 1.591201979498678] <- {Rule[x, 1], Rule[y, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.332514075382279, 3.679324697962366] <- {Rule[x, 1], Rule[y, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.3508885868787868, -2.154747660864471] <- {Rule[x, 2], Rule[y, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.7163677822018446, -2.655921045924753] <- {Rule[x, 2], Rule[y, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[7.956545556463588, 3.0201849952675923] <- {Rule[x, 2], Rule[y, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-10.210826452635473, -12.838467883646597] <- {Rule[x, 3], Rule[y, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[8.999968112497857, -14.200798389163268] <- {Rule[x, 3], Rule[y, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[20.52596630570947, 1.2284575190164926] <- {Rule[x, 3], Rule[y, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.8272584783533998, -6.350283938682339] <- {Rule[x, 1], Rule[y, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.7726398453192989, -6.534655323508316] <- {Rule[x, 1], Rule[y, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.332514075382279, -4.446532605044628] <- {Rule[x, 1], Rule[y, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3508885868787868, -10.280604963871465] <- {Rule[x, 2], Rule[y, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.7163677822018446, -10.781778348931747] <- {Rule[x, 2], Rule[y, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[7.956545556463588, -5.105672307739401] <- {Rule[x, 2], Rule[y, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.210826452635473, -20.964325186653593] <- {Rule[x, 3], Rule[y, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[8.999968112497857, -22.326655692170263] <- {Rule[x, 3], Rule[y, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[20.52596630570947, -6.897399783990501] <- {Rule[x, 3], Rule[y, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4307814180889216, -2.5274977183539185] <- {Rule[x, 1], Rule[y, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.1691169055837771, -2.711869103179895] <- {Rule[x, 1], Rule[y, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.7289911356467575, -0.6237463847162072] <- {Rule[x, 1], Rule[y, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.954411526614308, -6.4578187435430445] <- {Rule[x, 2], Rule[y, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.112844842466323, -6.9589921286033265] <- {Rule[x, 2], Rule[y, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[7.353022616728066, -1.2828860874109806] <- {Rule[x, 2], Rule[y, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.814349392370994, -17.14153896632517] <- {Rule[x, 3], Rule[y, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[8.396445172762336, -18.503869471841842] <- {Rule[x, 3], Rule[y, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[19.92244336597395, -3.0746135636620804] <- {Rule[x, 3], Rule[y, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4307814180889216, -2.047212856003766] <- {Rule[x, 1], Rule[y, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.1691169055837771, -2.2315842408297426] <- {Rule[x, 1], Rule[y, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.7289911356467575, -0.14346152236605478] <- {Rule[x, 1], Rule[y, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.954411526614308, -5.977533881192891] <- {Rule[x, 2], Rule[y, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.112844842466323, -6.478707266253173] <- {Rule[x, 2], Rule[y, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[7.353022616728066, -0.8026012250608282] <- {Rule[x, 2], Rule[y, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-10.814349392370994, -16.66125410397502] <- {Rule[x, 3], Rule[y, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[8.396445172762336, -18.02358460949169] <- {Rule[x, 3], Rule[y, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[19.92244336597395, -2.594328701311928] <- {Rule[x, 3], Rule[y, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.2.E26 ${\displaystyle{\displaystyle z^{a}=\exp\left(a\operatorname{Ln}z\right)}}$ (z)^(a)= exp(a*ln(z)) (z)^(a)= Exp[a*Log[z]] Successful Failure - Successful
4.2.E28 ${\displaystyle{\displaystyle z^{a}=\exp\left(a\ln z\right)}}$ (z)^(a)= exp(a*ln(z)) (z)^(a)= Exp[a*Log[z]] Successful Successful - -
4.2.E29 ${\displaystyle{\displaystyle|z^{a}|=|z|^{\Re a}\exp\left(-(\Im a)\operatorname% {ph}z\right)}}$ abs((z)^(a))=(abs(z))^(Re(a))* exp(-(Im(a))* argument(z)) Abs[(z)^(a)]=(Abs[z])^(Re[a])* Exp[-(Im[a])* Arg[z]] Failure Failure Successful Successful
4.2.E30 ${\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=(\Re a)% \operatorname{ph}z+(\Im a)\ln|z|}}$ argument((z)^(a))=(Re(a))* argument(z)+(Im(a))* ln(abs(z)) Arg[(z)^(a)]=(Re[a])* Arg[z]+(Im[a])* Log[Abs[z]] Failure Failure
Fail
-6.283185309 <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
6.283185309 <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
6.283185309 <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-6.283185309 <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
Fail
-6.283185307179586 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.283185307179586 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
6.283185307179586 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
-6.283185307179586 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
4.2#Ex2 ${\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=a\operatorname% {ph}z}}$ argument((z)^(a))= a*argument(z) Arg[(z)^(a)]= a*Arg[z] Failure Failure
Fail
.980258143-1.110720734*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.9802581426+1.110720734*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.980258144+3.332162204*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-5.302927166-3.332162204*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.9802581426+1.110720734*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.980258143-1.110720734*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
5.302927166-3.332162204*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.980258144+3.332162204*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.980258143+1.110720734*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.9802581426-1.110720734*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.980258144-3.332162204*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
5.302927166+3.332162204*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.9802581426-1.110720734*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.980258143+1.110720734*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-5.302927166+3.332162204*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.980258144-3.332162204*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.9802581434685473, -1.1107207345395915] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.9802581434685472, 1.1107207345395915] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.9802581434685469, 3.332162203618774] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.302927163711039, -3.332162203618774] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685472, 1.1107207345395915] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685473, -1.1107207345395915] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.302927163711039, -3.332162203618774] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685469, 3.332162203618774] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685473, 1.1107207345395915] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685473, -1.1107207345395915] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.9802581434685469, -3.332162203618774] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.302927163711039, 3.332162203618774] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.9802581434685473, -1.1107207345395915] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.9802581434685473, 1.1107207345395915] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.302927163711039, 3.332162203618774] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.9802581434685469, -3.332162203618774] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.2.E32 ${\displaystyle{\displaystyle e^{z}=\exp z}}$ exp(z)= exp(z) Exp[z]= Exp[z] Successful Successful - -
4.2.E33 ${\displaystyle{\displaystyle e^{z}=(\exp z)\exp\left(2kz\pi\mathrm{i}\right)}}$ exp(z)=(exp(z))* exp(2*k*z*Pi*I) Exp[z]=(Exp[z])* Exp[2*k*z*Pi*I] Failure Failure
Fail
.6414354628+4.062928650*I <- {z = 2^(1/2)+I*2^(1/2), k = 3}
-.1544020768e13-.1710664597e12*I <- {z = 2^(1/2)-I*2^(1/2), k = 3}
.8993679173e11+.1849553851e11*I <- {z = -2^(1/2)-I*2^(1/2), k = 3}
.3791252193e-1+.2401424313*I <- {z = -2^(1/2)+I*2^(1/2), k = 3}
Fail
Complex[0.6414354615731531, 4.062928651501303] <- {Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.5440207807554412*^12, -1.710664745395911*^11] <- {Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[8.993679264986926*^10, 1.8495537828408436*^10] <- {Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.03791252182632387, 0.24014243117514714] <- {Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.2.E36 ${\displaystyle{\displaystyle-\pi<=\Im\left(\frac{1}{a}\operatorname{Ln}w\right% )}}$ - Pi < = Im((1)/(a)*ln(w)) - Pi < = Im[Divide[1,a]*Log[w]] Failure Failure Successful Successful
4.2.E36 ${\displaystyle{\displaystyle\Im\left(\frac{1}{a}\operatorname{Ln}w\right)<=\pi}}$ Im((1)/(a)*ln(w))< = Pi Im[Divide[1,a]*Log[w]]< = Pi Failure Failure Successful Successful
4.4.E1 ${\displaystyle{\displaystyle\ln 1=0}}$ ln(1)= 0 Log[1]= 0 Successful Successful - -
4.4.E2 ${\displaystyle{\displaystyle\ln\left(-1+\mathrm{i}0\right)=+\pi\mathrm{i}}}$ ln(- 1 + I*0)= + Pi*I Log[- 1 + I*0]= + Pi*I Successful Successful - -
4.4.E2 ${\displaystyle{\displaystyle\ln\left(-1-\mathrm{i}0\right)=-\pi\mathrm{i}}}$ ln(- 1 - I*0)= - Pi*I Log[- 1 - I*0]= - Pi*I Failure Failure
Fail
6.283185308*I <- {}
Fail
Complex[0.0, 6.283185307179586] <- {}
4.4.E3 ${\displaystyle{\displaystyle\ln\left(+\mathrm{i}\right)=+\tfrac{1}{2}\pi% \mathrm{i}}}$ ln(+ I)= +(1)/(2)*Pi*I Log[+ I]= +Divide[1,2]*Pi*I Successful Successful - -
4.4.E3 ${\displaystyle{\displaystyle\ln\left(-\mathrm{i}\right)=-\tfrac{1}{2}\pi% \mathrm{i}}}$ ln(- I)= -(1)/(2)*Pi*I Log[- I]= -Divide[1,2]*Pi*I Successful Successful - -
4.4.E5 ${\displaystyle{\displaystyle e^{+\pi\mathrm{i}}=-1}}$ exp(+ Pi*I)= - 1 Exp[+ Pi*I]= - 1 Successful Successful - -
4.4.E5 ${\displaystyle{\displaystyle e^{-\pi\mathrm{i}}=-1}}$ exp(- Pi*I)= - 1 Exp[- Pi*I]= - 1 Successful Successful - -
4.4.E6 ${\displaystyle{\displaystyle e^{+\pi\mathrm{i}/2}=+\mathrm{i}}}$ exp(+ Pi*I/ 2)= + I Exp[+ Pi*I/ 2]= + I Successful Successful - -
4.4.E6 ${\displaystyle{\displaystyle e^{-\pi\mathrm{i}/2}=-\mathrm{i}}}$ exp(- Pi*I/ 2)= - I Exp[- Pi*I/ 2]= - I Successful Successful - -
4.4.E7 ${\displaystyle{\displaystyle e^{2\pi k\mathrm{i}}=1}}$ exp(2*Pi*k*I)= 1 Exp[2*Pi*k*I]= 1 Successful Failure - Successful
4.4.E8 ${\displaystyle{\displaystyle e^{+\pi\mathrm{i}/3}=\frac{1}{2}+\mathrm{i}\frac{% \sqrt{3}}{2}}}$ exp(+ Pi*I/ 3)=(1)/(2)+ I*(sqrt(3))/(2) Exp[+ Pi*I/ 3]=Divide[1,2]+ I*Divide[Sqrt[3],2] Successful Successful - -
4.4.E8 ${\displaystyle{\displaystyle e^{-\pi\mathrm{i}/3}=\frac{1}{2}-\mathrm{i}\frac{% \sqrt{3}}{2}}}$ exp(- Pi*I/ 3)=(1)/(2)- I*(sqrt(3))/(2) Exp[- Pi*I/ 3]=Divide[1,2]- I*Divide[Sqrt[3],2] Successful Successful - -
4.4.E9 ${\displaystyle{\displaystyle e^{+2\pi\mathrm{i}/3}=-\frac{1}{2}+\mathrm{i}% \frac{\sqrt{3}}{2}}}$ exp(+ 2*Pi*I/ 3)= -(1)/(2)+ I*(sqrt(3))/(2) Exp[+ 2*Pi*I/ 3]= -Divide[1,2]+ I*Divide[Sqrt[3],2] Successful Successful - -
4.4.E9 ${\displaystyle{\displaystyle e^{-2\pi\mathrm{i}/3}=-\frac{1}{2}-\mathrm{i}% \frac{\sqrt{3}}{2}}}$ exp(- 2*Pi*I/ 3)= -(1)/(2)- I*(sqrt(3))/(2) Exp[- 2*Pi*I/ 3]= -Divide[1,2]- I*Divide[Sqrt[3],2] Successful Successful - -
4.4.E10 ${\displaystyle{\displaystyle e^{+\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}+\mathrm{i% }\frac{1}{\sqrt{2}}}}$ exp(+ Pi*I/ 4)=(1)/(sqrt(2))+ I*(1)/(sqrt(2)) Exp[+ Pi*I/ 4]=Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]] Successful Successful - -
4.4.E10 ${\displaystyle{\displaystyle e^{-\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}-\mathrm{i% }\frac{1}{\sqrt{2}}}}$ exp(- Pi*I/ 4)=(1)/(sqrt(2))- I*(1)/(sqrt(2)) Exp[- Pi*I/ 4]=Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]] Successful Successful - -
4.4.E11 ${\displaystyle{\displaystyle e^{+3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}+\mathrm% {i}\frac{1}{\sqrt{2}}}}$ exp(+ 3*Pi*I/ 4)= -(1)/(sqrt(2))+ I*(1)/(sqrt(2)) Exp[+ 3*Pi*I/ 4]= -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]] Successful Successful - -
4.4.E11 ${\displaystyle{\displaystyle e^{-3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}-\mathrm% {i}\frac{1}{\sqrt{2}}}}$ exp(- 3*Pi*I/ 4)= -(1)/(sqrt(2))- I*(1)/(sqrt(2)) Exp[- 3*Pi*I/ 4]= -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]] Successful Successful - -
4.4.E12 ${\displaystyle{\displaystyle{\mathrm{i}^{+\mathrm{i}}}=e^{-\pi/2}}}$ (I)^(+ I)= exp(- Pi/ 2) (I)^(+ I)= Exp[- Pi/ 2] Successful Successful - -
4.4.E12 ${\displaystyle{\displaystyle{\mathrm{i}^{-\mathrm{i}}}=e^{+\pi/2}}}$ (I)^(- I)= exp(+ Pi/ 2) (I)^(- I)= Exp[+ Pi/ 2] Successful Successful - -
4.4.E13 ${\displaystyle{\displaystyle\lim_{x\to\infty}x^{-a}\ln x=0}}$ limit((x)^(- a)* ln(x), x = infinity)= 0 Limit[(x)^(- a)* Log[x], x -> Infinity]= 0 Successful Failure -
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.4.E14 ${\displaystyle{\displaystyle\lim_{x\to 0}x^{a}\ln x=0}}$ limit((x)^(a)* ln(x), x = 0)= 0 Limit[(x)^(a)* Log[x], x -> 0]= 0 Failure Failure Skip
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[a, Rational[1, 2]], Rule[ConditionalExpression[0, Greater[a, 0]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.4.E19 ${\displaystyle{\displaystyle\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1% }{k}\right)-\ln n\right)=\gamma}}$ limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity)= gamma Limit[(Sum[Divide[1,k], {k, 1, n}])- Log[n], n -> Infinity]= EulerGamma Successful Successful - -
4.5.E1 ${\displaystyle{\displaystyle\frac{x}{1+x}<\ln\left(1+x\right)}}$ (x)/(1 + x)< ln(1 + x) Divide[x,1 + x]< Log[1 + x] Failure Failure Skip Successful
4.5.E1 ${\displaystyle{\displaystyle\ln\left(1+x\right) ln(1 + x)< x Log[1 + x]< x Failure Failure Skip Successful
4.5.E2 ${\displaystyle{\displaystyle x<-\ln\left(1-x\right)}}$ x < - ln(1 - x) x < - Log[1 - x] Failure Failure Skip Successful
4.5.E2 ${\displaystyle{\displaystyle-\ln\left(1-x\right)<\frac{x}{1-x}}}$ - ln(1 - x)<(x)/(1 - x) - Log[1 - x]<Divide[x,1 - x] Failure Failure Skip Successful
4.5.E3 ${\displaystyle{\displaystyle|\ln\left(1-x\right)|<\tfrac{3}{2}x}}$ abs(ln(1 - x))<(3)/(2)*x Abs[Log[1 - x]]<Divide[3,2]*x Failure Failure Error Successful
4.5.E4 ${\displaystyle{\displaystyle\ln x<=x-1}}$ ln(x)< = x - 1 Log[x]< = x - 1 Failure Failure Successful Successful
4.5.E5 ${\displaystyle{\displaystyle\ln x<=a(x^{1/a}-1)}}$ ln(x)< = a*((x)^(1/ a)- 1) Log[x]< = a*((x)^(1/ a)- 1) Failure Failure Successful Successful
4.5.E6 ${\displaystyle{\displaystyle|\ln\left(1+z\right)|<=-\ln\left(1-|z|\right)}}$ abs(ln(1 + z))< = - ln(1 -abs(z)) Abs[Log[1 + z]]< = - Log[1 -Abs[z]] Failure Failure Successful Successful
4.7.E1 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\ln z=\frac{1}{z}}}$ diff(ln(z), z)=(1)/(z) D[Log[z], z]=Divide[1,z] Successful Successful - -
4.7.E2 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{Ln}z=% \frac{1}{z}}}$ diff(ln(z), z)=(1)/(z) D[Log[z], z]=Divide[1,z] Successful Successful - -
4.7.E3 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\ln z=(-% 1)^{n-1}(n-1)!z^{-n}}}$ diff(ln(z), [z$(n)])=(- 1)^(n - 1)*factorial(n - 1)*(z)^(- n) D[Log[z], {z, n}]=(- 1)^(n - 1)*(n - 1)!*(z)^(- n) Failure Failure Successful Successful 4.7.E4 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}% \operatorname{Ln}z=(-1)^{n-1}(n-1)!z^{-n}}}$ diff(ln(z), [z$(n)])=(- 1)^(n - 1)*factorial(n - 1)*(z)^(- n) D[Log[z], {z, n}]=(- 1)^(n - 1)*(n - 1)!*(z)^(- n) Failure Failure Successful Successful
4.7.E7 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{z}=e^{z}}}$ diff(exp(z), z)= exp(z) D[Exp[z], z]= Exp[z] Successful Successful - -
4.7.E8 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{az}=ae^{az}}}$ diff(exp(a*z), z)= a*exp(a*z) D[Exp[a*z], z]= a*Exp[a*z] Successful Successful - -
4.7.E9 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}a^{z}=a^{z}\ln a}}$ diff((a)^(z), z)= (a)^(z)* ln(a) D[(a)^(z), z]= (a)^(z)* Log[a] Successful Failure - Successful
4.7.E10 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}z^{a}=az^{a-1}}}$ diff((z)^(a), z)= a*(z)^(a - 1) D[(z)^(a), z]= a*(z)^(a - 1) Successful Successful - -
4.7.E14 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}=aw}}$ diff(w, [z$(2)])= a*w D[w, {z, 2}]= a*w Failure Failure Skip Successful 4.8.E1 ${\displaystyle{\displaystyle\operatorname{Ln}\left(z_{1}z_{2}\right)=% \operatorname{Ln}z_{1}+\operatorname{Ln}z_{2}}}$ ln(z[1]*z[2])= ln(z[1])+ ln(z[2]) Log[Subscript[z, 1]*Subscript[z, 2]]= Log[Subscript[z, 1]]+ Log[Subscript[z, 2]] Failure Failure Fail .4e-9+6.283185307*I <- {z[1] = 2^(1/2)-I*2^(1/2), z[2] = -2^(1/2)-I*2^(1/2)} .4e-9+6.283185307*I <- {z[1] = -2^(1/2)-I*2^(1/2), z[2] = 2^(1/2)-I*2^(1/2)} 0.+6.283185307*I <- {z[1] = -2^(1/2)-I*2^(1/2), z[2] = -2^(1/2)-I*2^(1/2)} 0.-6.283185307*I <- {z[1] = -2^(1/2)+I*2^(1/2), z[2] = -2^(1/2)+I*2^(1/2)} Fail Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 4.8.E2 ${\displaystyle{\displaystyle\ln\left(z_{1}z_{2}\right)=\ln z_{1}+\ln z_{2}}}$ ln(z[1]*z[2])= ln(z[1])+ ln(z[2]) Log[Subscript[z, 1]*Subscript[z, 2]]= Log[Subscript[z, 1]]+ Log[Subscript[z, 2]] Failure Failure Skip Fail Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} 4.8.E3 ${\displaystyle{\displaystyle\operatorname{Ln}\frac{z_{1}}{z_{2}}=\operatorname% {Ln}z_{1}-\operatorname{Ln}z_{2}}}$ ln((z[1])/(z[2]))= ln(z[1])- ln(z[2]) Log[Divide[Subscript[z, 1],Subscript[z, 2]]]= Log[Subscript[z, 1]]- Log[Subscript[z, 2]] Failure Failure Fail 0.+6.283185307*I <- {z[1] = 2^(1/2)-I*2^(1/2), z[2] = -2^(1/2)+I*2^(1/2)} 0.+6.283185307*I <- {z[1] = -2^(1/2)-I*2^(1/2), z[2] = 2^(1/2)+I*2^(1/2)} 0.+6.283185307*I <- {z[1] = -2^(1/2)-I*2^(1/2), z[2] = -2^(1/2)+I*2^(1/2)} 0.-6.283185307*I <- {z[1] = -2^(1/2)+I*2^(1/2), z[2] = -2^(1/2)-I*2^(1/2)} Fail Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 4.8.E4 ${\displaystyle{\displaystyle\ln\frac{z_{1}}{z_{2}}=\ln z_{1}-\ln z_{2}}}$ ln((z[1])/(z[2]))= ln(z[1])- ln(z[2]) Log[Divide[Subscript[z, 1],Subscript[z, 2]]]= Log[Subscript[z, 1]]- Log[Subscript[z, 2]] Failure Failure Skip Fail Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[Subscript[z, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[z, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} 4.8.E5 ${\displaystyle{\displaystyle\operatorname{Ln}\left(z^{n}\right)=n\operatorname% {Ln}z}}$ ln((z)^(n))= n*ln(z) Log[(z)^(n)]= n*Log[z] Failure Failure Fail 0.+6.283185307*I <- {z = -2^(1/2)-I*2^(1/2), n = 3} 0.-6.283185307*I <- {z = -2^(1/2)+I*2^(1/2), n = 3} Fail Complex[0.0, 6.283185307179586] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 4.8.E6 ${\displaystyle{\displaystyle\ln\left(z^{n}\right)=n\ln z}}$ ln((z)^(n))= n*ln(z) Log[(z)^(n)]= n*Log[z] Failure Failure Skip Successful 4.8.E7 ${\displaystyle{\displaystyle\ln\frac{1}{z}=-\ln z}}$ ln((1)/(z))= - ln(z) Log[Divide[1,z]]= - Log[z] Failure Failure Skip Successful 4.8.E8 ${\displaystyle{\displaystyle\operatorname{Ln}\left(\exp z\right)=z+2k\pi% \mathrm{i}}}$ ln(exp(z))= z + 2*k*Pi*I Log[Exp[z]]= z + 2*k*Pi*I Failure Failure Fail 0.-18.84955592*I <- {z = 2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {z = 2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {z = -2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {z = -2^(1/2)+I*2^(1/2), k = 3} Fail Complex[0.0, -18.84955592153876] <- {Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 4.8.E9 ${\displaystyle{\displaystyle\ln\left(\exp z\right)=z}}$ ln(exp(z))= z Log[Exp[z]]= z Failure Failure Skip Successful 4.8.E10 ${\displaystyle{\displaystyle\exp\left(\ln z\right)=\exp\left(\operatorname{Ln}% z\right)}}$ exp(ln(z))= exp(ln(z)) Exp[Log[z]]= Exp[Log[z]] Successful Successful - - 4.8.E10 ${\displaystyle{\displaystyle\exp\left(\operatorname{Ln}z\right)=z}}$ exp(ln(z))= z Exp[Log[z]]= z Successful Successful - - 4.8.E11 ${\displaystyle{\displaystyle\operatorname{Ln}\left(a^{z}\right)=z\operatorname% {Ln}a+2k\pi\mathrm{i}}}$ ln((a)^(z))= z*ln(a)+ 2*k*Pi*I Log[(a)^(z)]= z*Log[a]+ 2*k*Pi*I Failure Failure Fail 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-12.56637061*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-25.13274123*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-25.13274123*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-12.56637061*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-18.84955592*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} Fail Complex[1.1102230246251565*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -25.132741228718345] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -25.132741228718345] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 4.8.E12 ${\displaystyle{\displaystyle\ln\left(a^{z}\right)=z\ln a+2k\pi\mathrm{i}}}$ ln((a)^(z))= z*ln(a)+ 2*k*Pi*I Log[(a)^(z)]= z*Log[a]+ 2*k*Pi*I Failure Failure Fail 0.-6.283185308*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185313*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 2} 0.-12.56637061*I <- {a = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-12.56637062*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 1} 0.-18.84955593*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 2} 0.-25.13274123*I <- {a = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} 0.-12.56637062*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 1} 0.-18.84955593*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 2} 0.-25.13274123*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185313*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 2} 0.-12.56637061*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2), k = 3} 0.-6.283185308*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 1} 0.-12.56637062*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 2} 0.-18.84955592*I <- {a = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2), k = 3} Fail Complex[1.1102230246251565*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[1.1102230246251565*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[4.440892098500626*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -6.283185307179586] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -12.566370614359172] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[-1.3877787807814457*^-16, -18.84955592153876] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -25.132741228718345] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -25.132741228718345] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -12.566370614359172] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -18.84955592153876] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[k, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 4.8.E13 ${\displaystyle{\displaystyle\ln\left(a^{x}\right)=x\ln a}}$ ln((a)^(x))= x*ln(a) Log[(a)^(x)]= x*Log[a] Failure Failure Successful Successful 4.10.E1 ${\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z}=\ln z}}$ int((1)/(z), z)= ln(z) Integrate[Divide[1,z], z]= Log[z] Successful Successful - - 4.10.E2 ${\displaystyle{\displaystyle\int\ln z\mathrm{d}z=z\ln z-z}}$ int(ln(z), z)= z*ln(z)- z Integrate[Log[z], z]= z*Log[z]- z Successful Successful - - 4.10.E3 ${\displaystyle{\displaystyle\int z^{n}\ln z\mathrm{d}z=\frac{z^{n+1}}{n+1}\ln z% -\frac{z^{n+1}}{(n+1)^{2}}}}$ int((z)^(n)* ln(z), z)=((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2)) Integrate[(z)^(n)* Log[z], z]=Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)] Successful Successful - - 4.10.E4 ${\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z\ln z}=\ln\left(\ln z% \right)}}$ int((1)/(z*ln(z)), z)= ln(ln(z)) Integrate[Divide[1,z*Log[z]], z]= Log[Log[z]] Successful Successful - - 4.10.E5 ${\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1-t}\mathrm{d}t=-\frac{% \pi^{2}}{6}}}$ int((ln(t))/(1 - t), t = 0..1)= -((Pi)^(2))/(6) Integrate[Divide[Log[t],1 - t], {t, 0, 1}]= -Divide[(Pi)^(2),6] Successful Successful - - 4.10.E6 ${\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1+t}\mathrm{d}t=-\frac{% \pi^{2}}{12}}}$ int((ln(t))/(1 + t), t = 0..1)= -((Pi)^(2))/(12) Integrate[Divide[Log[t],1 + t], {t, 0, 1}]= -Divide[(Pi)^(2),12] Successful Successful - - 4.10.E8 ${\displaystyle{\displaystyle\int e^{az}\mathrm{d}z=\frac{e^{az}}{a}}}$ int(exp(a*z), z)=(exp(a*z))/(a) Integrate[Exp[a*z], z]=Divide[Exp[a*z],a] Successful Successful - - 4.10.E9 ${\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{e^{az}+b}=\frac{1}{ab}(az-% \ln\left(e^{az}+b\right))}}$ int((1)/(exp(a*z)+ b), z)=(1)/(a*b)*(a*z - ln(exp(a*z)+ b)) Integrate[Divide[1,Exp[a*z]+ b], z]=Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b]) Failure Successful Skip - 4.10.E10 ${\displaystyle{\displaystyle\int\frac{e^{az}-1}{e^{az}+1}\mathrm{d}z=\frac{2}{% a}\ln\left(e^{az/2}+e^{-az/2}\right)}}$ int((exp(a*z)- 1)/(exp(a*z)+ 1), z)=(2)/(a)*ln(exp(a*z/ 2)+ exp(- a*z/ 2)) Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z]=Divide[2,a]*Log[Exp[a*z/ 2]+ Exp[- a*z/ 2]] Failure Failure Skip Fail Complex[-4.442882938158366, -4.442882938158366] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[4.442882938158366, -4.442882938158366] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[4.442882938158366, 4.442882938158366] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-4.442882938158366, 4.442882938158366] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} 4.10.E11 ${\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{-cx^{2}}\mathrm{d}x=% \sqrt{\frac{\pi}{c}}}}$ int(exp(- c*(x)^(2)), x = - infinity..infinity)=sqrt((Pi)/(c)) Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}]=Sqrt[Divide[Pi,c]] Successful Failure - Error 4.10.E12 ${\displaystyle{\displaystyle\int_{0}^{\ln 2}\frac{xe^{x}}{e^{x}-1}\mathrm{d}x=% \frac{\pi^{2}}{12}}}$ int((x*exp(x))/(exp(x)- 1), x = 0..ln(2))=((Pi)^(2))/(12) Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}]=Divide[(Pi)^(2),12] Successful Successful - - 4.10.E13 ${\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\mathrm{d}x}{e^{x}+1}=\ln 2}}$ int((1)/(exp(x)+ 1), x = 0..infinity)= ln(2) Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}]= Log[2] Successful Successful - - 4.12.E6 ${\displaystyle{\displaystyle\phi(x)=\ln\left(x+1\right)}}$ phi*(x)= ln(x + 1) \[Phi]*(x)= Log[x + 1] Failure Failure Skip Successful 4.12.E9 ${\displaystyle{\displaystyle\psi(x)=\ell+{\ln^{(\ell)}}x}}$ psi*(x)= ell + subs( temp=x, diff( ln(temp), temp$(ell) ) ) \[Psi]*(x)= \[ScriptL]+ (D[Log[temp], {temp, \[ScriptL]}]/.temp-> x) Failure Failure
Fail
.454653676+2.121320343*I <- {psi = 2^(1/2)+I*2^(1/2), ell = 1, x = 3/2}
.565764787+2.121320343*I <- {psi = 2^(1/2)+I*2^(1/2), ell = 2, x = 3/2}
-1.471272250+2.121320343*I <- {psi = 2^(1/2)+I*2^(1/2), ell = 3, x = 3/2}
.454653676-2.121320343*I <- {psi = 2^(1/2)-I*2^(1/2), ell = 1, x = 3/2}
.565764787-2.121320343*I <- {psi = 2^(1/2)-I*2^(1/2), ell = 2, x = 3/2}
-1.471272250-2.121320343*I <- {psi = 2^(1/2)-I*2^(1/2), ell = 3, x = 3/2}
-3.787987010-2.121320343*I <- {psi = -2^(1/2)-I*2^(1/2), ell = 1, x = 3/2}
-3.676875899-2.121320343*I <- {psi = -2^(1/2)-I*2^(1/2), ell = 2, x = 3/2}
-5.713912936-2.121320343*I <- {psi = -2^(1/2)-I*2^(1/2), ell = 3, x = 3/2}
-3.787987010+2.121320343*I <- {psi = -2^(1/2)+I*2^(1/2), ell = 1, x = 3/2}
-3.676875899+2.121320343*I <- {psi = -2^(1/2)+I*2^(1/2), ell = 2, x = 3/2}
-5.713912936+2.121320343*I <- {psi = -2^(1/2)+I*2^(1/2), ell = 3, x = 3/2}
Fail
Complex[0.45465367689297564, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 1], Rule[ψ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5657647880040868, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 2], Rule[ψ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.4712722490329502, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 3], Rule[ψ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.45465367689297564, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 1], Rule[ψ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.5657647880040868, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 2], Rule[ψ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4712722490329502, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 3], Rule[ψ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.787987010226309, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 1], Rule[ψ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.676875899115198, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 2], Rule[ψ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.713912936152235, -2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 3], Rule[ψ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.787987010226309, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 1], Rule[ψ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.676875899115198, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 2], Rule[ψ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.713912936152235, 2.1213203435596424] <- {Rule[x, Rational[3, 2]], Rule[ℓ, 3], Rule[ψ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.13.E1 ${\displaystyle{\displaystyle We^{W}=x}}$ W*exp(W)= x W*Exp[W]= x Failure Failure
Fail
-5.838722068+6.652975529*I <- {W = 2^(1/2)+I*2^(1/2), x = 1}
-6.838722068+6.652975529*I <- {W = 2^(1/2)+I*2^(1/2), x = 2}
-7.838722068+6.652975529*I <- {W = 2^(1/2)+I*2^(1/2), x = 3}
-5.838722068-6.652975529*I <- {W = 2^(1/2)-I*2^(1/2), x = 1}
-6.838722068-6.652975529*I <- {W = 2^(1/2)-I*2^(1/2), x = 2}
-7.838722068-6.652975529*I <- {W = 2^(1/2)-I*2^(1/2), x = 3}
-1.393229086+.2859962805*I <- {W = -2^(1/2)-I*2^(1/2), x = 1}
-2.393229086+.2859962805*I <- {W = -2^(1/2)-I*2^(1/2), x = 2}
-3.393229086+.2859962805*I <- {W = -2^(1/2)-I*2^(1/2), x = 3}
-1.393229086-.2859962805*I <- {W = -2^(1/2)+I*2^(1/2), x = 1}
-2.393229086-.2859962805*I <- {W = -2^(1/2)+I*2^(1/2), x = 2}
-3.393229086-.2859962805*I <- {W = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[-5.838722072781763, 6.652975531039188] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-6.838722072781763, 6.652975531039188] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-7.838722072781763, 6.652975531039188] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-5.838722072781763, -6.652975531039188] <- {Rule[W, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-6.838722072781763, -6.652975531039188] <- {Rule[W, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-7.838722072781763, -6.652975531039188] <- {Rule[W, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.3932290856204985, 0.2859962805175824] <- {Rule[W, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.3932290856204985, 0.2859962805175824] <- {Rule[W, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.3932290856204985, 0.2859962805175824] <- {Rule[W, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.3932290856204985, -0.2859962805175824] <- {Rule[W, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.3932290856204985, -0.2859962805175824] <- {Rule[W, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.3932290856204985, -0.2859962805175824] <- {Rule[W, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
4.13#Ex1 ${\displaystyle{\displaystyle\mathrm{Wp}\left(-1/e\right)=\mathrm{Wm}\left(-1/e% \right)}}$ LambertW(0, - 1/ exp(1))= LambertW(-1, - 1/ exp(1)) ProductLog[0, - 1/ E]= ProductLog[-1, - 1/ E] Successful Successful - -
4.13#Ex1 ${\displaystyle{\displaystyle\mathrm{Wm}\left(-1/e\right)=-1}}$ LambertW(-1, - 1/ exp(1))= - 1 ProductLog[-1, - 1/ E]= - 1 Successful Successful - -
4.13#Ex2 ${\displaystyle{\displaystyle\mathrm{Wp}\left(0\right)=0}}$ LambertW(0, 0)= 0 ProductLog[0, 0]= 0 Successful Successful - -
4.13#Ex3 ${\displaystyle{\displaystyle\mathrm{Wp}\left(e\right)=1}}$ LambertW(0, exp(1))= 1 ProductLog[0, E]= 1 Successful Successful - -
4.13#Ex4 ${\displaystyle{\displaystyle U+\ln U=x}}$ U + ln(U)= x U + Log[U]= x Failure Failure
Fail
1.107360742+2.199611725*I <- {U = 2^(1/2)+I*2^(1/2), x = 1}
.107360742+2.199611725*I <- {U = 2^(1/2)+I*2^(1/2), x = 2}
-.892639258+2.199611725*I <- {U = 2^(1/2)+I*2^(1/2), x = 3}
1.107360742-2.199611725*I <- {U = 2^(1/2)-I*2^(1/2), x = 1}
.107360742-2.199611725*I <- {U = 2^(1/2)-I*2^(1/2), x = 2}
-.892639258-2.199611725*I <- {U = 2^(1/2)-I*2^(1/2), x = 3}
-1.721066382-3.770408052*I <- {U = -2^(1/2)-I*2^(1/2), x = 1}
-2.721066382-3.770408052*I <- {U = -2^(1/2)-I*2^(1/2), x = 2}
-3.721066382-3.770408052*I <- {U = -2^(1/2)-I*2^(1/2), x = 3}
-1.721066382+3.770408052*I <- {U = -2^(1/2)+I*2^(1/2), x = 1}
-2.721066382+3.770408052*I <- {U = -2^(1/2)+I*2^(1/2), x = 2}
-3.721066382+3.770408052*I <- {U = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[1.1073607429330403, 2.199611725770543] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[0.10736074293304043, 2.199611725770543] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.8926392570669596, 2.199611725770543] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[1.1073607429330403, -2.199611725770543] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[0.10736074293304043, -2.199611725770543] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.8926392570669596, -2.199611725770543] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.7210663818131495, -3.7704080525654398] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.7210663818131495, -3.7704080525654398] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.7210663818131495, -3.7704080525654398] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.7210663818131495, 3.7704080525654398] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.7210663818131495, 3.7704080525654398] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.7210663818131495, 3.7704080525654398] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
4.13#Ex5 ${\displaystyle{\displaystyle U=U(x)}}$ U = U*(x) U = U*(x) Failure Failure
Fail
-1.414213562-1.414213562*I <- {U = 2^(1/2)+I*2^(1/2), x = 2}
-2.828427124-2.828427124*I <- {U = 2^(1/2)+I*2^(1/2), x = 3}
-1.414213562+1.414213562*I <- {U = 2^(1/2)-I*2^(1/2), x = 2}
-2.828427124+2.828427124*I <- {U = 2^(1/2)-I*2^(1/2), x = 3}
1.414213562+1.414213562*I <- {U = -2^(1/2)-I*2^(1/2), x = 2}
2.828427124+2.828427124*I <- {U = -2^(1/2)-I*2^(1/2), x = 3}
1.414213562-1.414213562*I <- {U = -2^(1/2)+I*2^(1/2), x = 2}
2.828427124-2.828427124*I <- {U = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-2.8284271247461903, -2.8284271247461903] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-2.8284271247461903, 2.8284271247461903] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[2.8284271247461903, -2.8284271247461903] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
4.13#Ex5 ${\displaystyle{\displaystyle U(x)=W\left(e^{x}\right)}}$ U*(x)= LambertW(exp(x)) U*(x)= ProductLog[Exp[x]] Failure Failure
Fail
.414213562+1.414213562*I <- {U = 2^(1/2)+I*2^(1/2), x = 1}
1.271281525+2.828427124*I <- {U = 2^(1/2)+I*2^(1/2), x = 2}
2.034700655+4.242640686*I <- {U = 2^(1/2)+I*2^(1/2), x = 3}
.414213562-1.414213562*I <- {U = 2^(1/2)-I*2^(1/2), x = 1}
1.271281525-2.828427124*I <- {U = 2^(1/2)-I*2^(1/2), x = 2}
2.034700655-4.242640686*I <- {U = 2^(1/2)-I*2^(1/2), x = 3}
-2.414213562-1.414213562*I <- {U = -2^(1/2)-I*2^(1/2), x = 1}
-4.385572723-2.828427124*I <- {U = -2^(1/2)-I*2^(1/2), x = 2}
-6.450580717-4.242640686*I <- {U = -2^(1/2)-I*2^(1/2), x = 3}
-2.414213562+1.414213562*I <- {U = -2^(1/2)+I*2^(1/2), x = 1}
-4.385572723+2.828427124*I <- {U = -2^(1/2)+I*2^(1/2), x = 2}
-6.450580717+4.242640686*I <- {U = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[1.2712815257485788, 2.8284271247461903] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[2.0347006555499627, 4.242640687119286] <- {Rule[U, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[1.2712815257485788, -2.8284271247461903] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[2.0347006555499627, -4.242640687119286] <- {Rule[U, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-4.385572723743802, -2.8284271247461903] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-6.450580718688609, -4.242640687119286] <- {Rule[U, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-4.385572723743802, 2.8284271247461903] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-6.450580718688609, 4.242640687119286] <- {Rule[U, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
4.13.E4 ${\displaystyle{\displaystyle\frac{\mathrm{d}W}{\mathrm{d}x}=\frac{e^{-W}}{1+W}}}$ diff(LambertW(x), =)*(exp(- LambertW($0)))/(1 + LambertW($0)) D[ProductLog[x], =]*Divide[Exp[- ProductLog[$0]],1 + ProductLog[$0]] Error Error - -
4.13.E5 ${\displaystyle{\displaystyle\mathrm{Wp}\left(x\right)=\sum_{n=1}^{\infty}(-1)^% {n-1}\frac{n^{n-2}}{(n-1)!}x^{n}}}$ LambertW(0, x)= sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity) ProductLog[0, x]= Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}] Failure Successful Skip -
4.13.E6 ${\displaystyle{\displaystyle W\left(-e^{-1-(t^{2}/2)}\right)=\sum_{n=0}^{% \infty}(-1)^{n-1}c_{n}t^{n}}}$ LambertW(- exp(- 1 -((t)^(2)/ 2)))= sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity) ProductLog[- Exp[- 1 -((t)^(2)/ 2)]]= Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}] Failure Failure Skip Successful
4.14.E1 ${\displaystyle{\displaystyle\sin z=\frac{e^{\mathrm{i}z}-e^{-\mathrm{i}z}}{2% \mathrm{i}}}}$ sin(z)=(exp(I*z)- exp(- I*z))/(2*I) Sin[z]=Divide[Exp[I*z]- Exp[- I*z],2*I] Successful Successful - -
4.14.E2 ${\displaystyle{\displaystyle\cos z=\frac{e^{\mathrm{i}z}+e^{-\mathrm{i}z}}{2}}}$ cos(z)=(exp(I*z)+ exp(- I*z))/(2) Cos[z]=Divide[Exp[I*z]+ Exp[- I*z],2] Successful Successful - -
4.14.E3 ${\displaystyle{\displaystyle\cos z+i\sin z=e^{+iz}}}$ cos(z)+ I*sin(z)= exp(+ I*z) Cos[z]+ I*Sin[z]= Exp[+ I*z] Successful Successful - -
4.14.E3 ${\displaystyle{\displaystyle\cos z-i\sin z=e^{-iz}}}$ cos(z)- I*sin(z)= exp(- I*z) Cos[z]- I*Sin[z]= Exp[- I*z] Successful Successful - -
4.14.E4 ${\displaystyle{\displaystyle\tan z=\frac{\sin z}{\cos z}}}$ tan(z)=(sin(z))/(cos(z)) Tan[z]=Divide[Sin[z],Cos[z]] Successful Successful - -
4.14.E5 ${\displaystyle{\displaystyle\csc z=\frac{1}{\sin z}}}$ csc(z)=(1)/(sin(z)) Csc[z]=Divide[1,Sin[z]] Successful Successful - -
4.14.E6 ${\displaystyle{\displaystyle\sec z=\frac{1}{\cos z}}}$ sec(z)=(1)/(cos(z)) Sec[z]=Divide[1,Cos[z]] Successful Successful - -
4.14.E7 ${\displaystyle{\displaystyle\cot z=\frac{\cos z}{\sin z}}}$ cot(z)=(cos(z))/(sin(z)) Cot[z]=Divide[Cos[z],Sin[z]] Successful Successful - -
4.14.E7 ${\displaystyle{\displaystyle\frac{\cos z}{\sin z}=\frac{1}{\tan z}}}$ (cos(z))/(sin(z))=(1)/(tan(z)) Divide[Cos[z],Sin[z]]=Divide[1,Tan[z]] Successful Successful - -
4.14.E8 ${\displaystyle{\displaystyle\sin\left(z+2k\pi\right)=\sin z}}$ sin(z + 2*k*Pi)= sin(z) Sin[z + 2*k*Pi]= Sin[z] Failure Failure Successful Successful
4.14.E9 ${\displaystyle{\displaystyle\cos\left(z+2k\pi\right)=\cos z}}$ cos(z + 2*k*Pi)= cos(z) Cos[z + 2*k*Pi]= Cos[z] Failure Failure Successful Successful
4.14.E10 ${\displaystyle{\displaystyle\tan\left(z+k\pi\right)=\tan z}}$ tan(z + k*Pi)= tan(z) Tan[z + k*Pi]= Tan[z] Failure Failure Successful Successful
4.15.E1 ${\displaystyle{\displaystyle\cos\left(x+iy\right)=\sin\left(x+\tfrac{1}{2}\pi+% iy\right)}}$ cos(x + I*y)= sin(x +(1)/(2)*Pi + I*y) Cos[x + I*y]= Sin[x +Divide[1,2]*Pi + I*y] Successful Successful - -
4.15.E2 ${\displaystyle{\displaystyle\cot\left(x+iy\right)=-\tan\left(x+\tfrac{1}{2}\pi% +iy\right)}}$ cot(x + I*y)= - tan(x +(1)/(2)*Pi + I*y) Cot[x + I*y]= - Tan[x +Divide[1,2]*Pi + I*y] Successful Successful - -
4.15.E3 ${\displaystyle{\displaystyle\sec\left(x+iy\right)=\csc\left(x+\tfrac{1}{2}\pi+% iy\right)}}$ sec(x + I*y)= csc(x +(1)/(2)*Pi + I*y) Sec[x + I*y]= Csc[x +Divide[1,2]*Pi + I*y] Successful Successful - -
4.17.E1 ${\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sin z}{z}=1}}$ limit((sin(z))/(z), z = 0)= 1 Limit[Divide[Sin[z],z], z -> 0]= 1 Successful Successful - -
4.17.E2 ${\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tan z}{z}=1}}$ limit((tan(z))/(z), z = 0)= 1 Limit[Divide[Tan[z],z], z -> 0]= 1 Successful Successful - -
4.17.E3 ${\displaystyle{\displaystyle\lim_{z\to 0}\frac{1-\cos z}{z^{2}}=\frac{1}{2}}}$ limit((1 - cos(z))/((z)^(2)), z = 0)=(1)/(2) Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0]=Divide[1,2] Successful Successful - -
4.18.E1 ${\displaystyle{\displaystyle\frac{2x}{\pi}<=\sin x}}$ (2*x)/(Pi)< = sin(x) Divide[2*x,Pi]< = Sin[x] Failure Failure Skip Successful
4.18.E1 ${\displaystyle{\displaystyle\sin x<=x}}$ sin(x)< = x Sin[x]< = x Failure Failure Skip Successful
4.18.E2 ${\displaystyle{\displaystyle x<=\tan x}}$ x < = tan(x) x < = Tan[x] Failure Failure Skip Successful
4.18.E3 ${\displaystyle{\displaystyle\cos x<=\frac{\sin x}{x}}}$ cos(x)< =(sin(x))/(x) Cos[x]< =Divide[Sin[x],x] Failure Failure Skip Successful
4.18.E3 ${\displaystyle{\displaystyle\frac{\sin x}{x}<=1}}$ (sin(x))/(x)< = 1 Divide[Sin[x],x]< = 1 Failure Failure Skip Successful
4.18.E4 ${\displaystyle{\displaystyle\pi<\frac{\sin\left(\pi x\right)}{x(1-x)}}}$ Pi <(sin(Pi*x))/(x*(1 - x)) Pi <Divide[Sin[Pi*x],x*(1 - x)] Failure Failure Successful Successful
4.18.E4 ${\displaystyle{\displaystyle\frac{\sin\left(\pi x\right)}{x(1-x)}<=4}}$ (sin(Pi*x))/(x*(1 - x))< = 4 Divide[Sin[Pi*x],x*(1 - x)]< = 4 Failure Failure Successful Successful
4.18.E5 ${\displaystyle{\displaystyle|\sinh y|<=|\sin z|\leq\cosh y}}$ abs(sinh(y))< =abs(sin(z))<= cosh(y) Abs[Sinh[y]]< =Abs[Sin[z]]<= Cosh[y] Failure Failure Error Successful
4.18.E6 ${\displaystyle{\displaystyle|\sinh y|<=|\cos z|\leq\cosh y}}$ abs(sinh(y))< =abs(cos(z))<= cosh(y) Abs[Sinh[y]]< =Abs[Cos[z]]<= Cosh[y] Failure Failure Error Successful
4.18.E7 ${\displaystyle{\displaystyle|\csc z|<=\operatorname{csch}|y|}}$ abs(csc(z))< = csch(abs(y)) Abs[Csc[z]]< = Csch[Abs[y]] Failure Failure
Fail
.4602792559 <= .2757205648 <- {z = 2^(1/2)+I*2^(1/2), y = 2}
.4602792559 <= .9982156967e-1 <- {z = 2^(1/2)+I*2^(1/2), y = 3}
.4602792559 <= .2757205648 <- {z = 2^(1/2)-I*2^(1/2), y = 2}
.4602792559 <= .9982156967e-1 <- {z = 2^(1/2)-I*2^(1/2), y = 3}
.4602792559 <= .2757205648 <- {z = -2^(1/2)-I*2^(1/2), y = 2}
.4602792559 <= .9982156967e-1 <- {z = -2^(1/2)-I*2^(1/2), y = 3}
.4602792559 <= .2757205648 <- {z = -2^(1/2)+I*2^(1/2), y = 2}
.4602792559 <= .9982156967e-1 <- {z = -2^(1/2)+I*2^(1/2), y = 3}
Successful
4.18.E8 ${\displaystyle{\displaystyle|\cos z|<=\cosh|z|}}$ abs(cos(z))< = cosh(abs(z)) Abs[Cos[z]]< = Cosh[Abs[z]] Failure Failure Successful Successful
4.18.E9 ${\displaystyle{\displaystyle|\sin z|<=\sinh|z|}}$ abs(sin(z))< = sinh(abs(z)) Abs[Sin[z]]< = Sinh[Abs[z]] Failure Failure Successful Successful
4.18#Ex1 ${\displaystyle{\displaystyle|\cos z|<2}}$ abs(cos(z))< 2 Abs[Cos[z]]< 2 Failure Failure Successful Successful
4.18#Ex2 ${\displaystyle{\displaystyle|\sin z|<=\tfrac{6}{5}|z|}}$ abs(sin(z))< =(6)/(5)*abs(z) Abs[Sin[z]]< =Divide[6,5]*Abs[z] Failure Failure Successful Successful
4.19.E7 ${\displaystyle{\displaystyle\ln\left(\frac{\sin z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n}2^{2n-1}B_{2n}}{n(2n)!}z^{2n}}}$ ln((sin(z))/(z))= sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) Log[Divide[Sin[z],z]]= Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}] Failure Failure Skip Error
4.19.E8 ${\displaystyle{\displaystyle\ln\left(\cos z\right)=\sum_{n=1}^{\infty}\frac{(-% 1)^{n}2^{2n-1}(2^{2n}-1)B_{2n}}{n(2n)!}z^{2n}}}$ ln(cos(z))= sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) Log[Cos[z]]= Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}] Failure Failure Skip Error
4.19.E9 ${\displaystyle{\displaystyle\ln\left(\frac{\tan z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)B_{2n}}{n(2n)!}z^{2n}}}$ ln((tan(z))/(z))= sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity) Log[Divide[Tan[z],z]]= Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}] Failure Failure Skip Error
4.20.E1 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sin z=\cos z}}$ diff(sin(z), z)= cos(z) D[Sin[z], z]= Cos[z] Successful Successful - -
4.20.E2 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cos z=-\sin z}}$ diff(cos(z), z)= - sin(z) D[Cos[z], z]= - Sin[z] Successful Successful - -
4.20.E3 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\tan z={\sec^{2}}z}}$ diff(tan(z), z)= (sec(z))^(2) D[Tan[z], z]= (Sec[z])^(2) Successful Successful - -
4.20.E4 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\csc z=-\csc z\cot z}}$ diff(csc(z), z)= - csc(z)*cot(z) D[Csc[z], z]= - Csc[z]*Cot[z] Successful Successful - -
4.20.E5 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sec z=\sec z\tan z}}$ diff(sec(z), z)= sec(z)*tan(z) D[Sec[z], z]= Sec[z]*Tan[z] Successful Successful - -
4.20.E6 ${\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cot z=-{\csc^{2}}z}}$ diff(cot(z), z)= - (csc(z))^(2) D[Cot[z], z]= - (Csc[z])^(2) Successful Successful - -
4.20.E7 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\sin z=% \sin\left(z+\tfrac{1}{2}n\pi\right)}}$ diff(sin(z), [z$(n)])= sin(z +(1)/(2)*n*Pi) D[Sin[z], {z, n}]= Sin[z +Divide[1,2]*n*Pi] Successful Successful - - 4.20.E8 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\cos z=% \cos\left(z+\tfrac{1}{2}n\pi\right)}}$ diff(cos(z), [z$(n)])= cos(z +(1)/(2)*n*Pi) D[Cos[z], {z, n}]= Cos[z +Divide[1,2]*n*Pi] Successful Successful - -
4.20.E9 ${\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+a^{2}w% =0}}$ diff(w, [z\$(2)])+ (a)^(2)* w = 0 D[w, {z, 2}]+ (a)^(2)* w = 0 Failure Failure
Fail
-5.656854245+5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
5.656854245+5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
5.656854245-5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-5.656854245-5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
5.656854245-5.656854245*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-5.656854245-5.656854245*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-5.656854245+5.656854245*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
5.656854245+5.656854245*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
-5.656854245+5.656854245*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
5.656854245+5.656854245*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
5.656854245-5.656854245*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-5.656854245-5.656854245*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
5.656854245-5.656854245*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-5.656854245-5.656854245*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-5.656854245+5.656854245*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
5.656854245+5.656854245*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.20.E10 ${\displaystyle{\displaystyle\left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2}+a% ^{2}w^{2}=1}}$ (diff(w, z))^(2)+ (a)^(2)* (w)^(2)= 1 (D[w, z])^(2)+ (a)^(2)* (w)^(2)= 1 Failure Failure
Fail
-16.99999998+0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-16.99999998+0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
-16.99999998+0.*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-16.99999998+0.*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
Fail
-17.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.20.E11 ${\displaystyle{\displaystyle\frac{\mathrm{d}w}{\mathrm{d}z}-a^{2}w^{2}=1}}$ diff(w, z)- (a)^(2)* (w)^(2)= 1 D[w, z]- (a)^(2)* (w)^(2)= 1 Failure Failure
Fail
14.99999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
14.99999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
14.99999998-0.*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
14.99999998-0.*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-16.99999998-0.*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
14.99999998+0.*I <- {a = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
Fail
15.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
-17.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
15.0 <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.20.E12 ${\displaystyle{\displaystyle w=A\cos\left(az\right)+B\sin\left(az\right)}}$ w = A*cos(a*z)+ B*sin(a*z) w = A*Cos[a*z]+ B*Sin[a*z] Failure Failure Skip Skip
4.20.E13 ${\displaystyle{\displaystyle w=(1/a)\sin\left(az+c\right)}}$ w =(1/ a)* sin(a*z + c) w =(1/ a)* Sin[a*z + c] Failure Failure
Fail
-43.99146068+34.43827298*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.560620374+.384416402*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.552876601+4.108989171*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.401710418+1.589052846*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-43.99146068+31.60984586*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.560620374-2.444010722*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.552876601+1.280562047*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.401710418-1.239374278*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-46.81988780+31.60984586*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.267806750-2.444010722*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.381303725+1.280562047*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.4267167058-1.239374278*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-46.81988780+34.43827298*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.267806750+.384416402*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.381303725+4.108989171*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.4267167058+1.589052846*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.280562047+3.381303725*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.444010722+1.267806750*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-31.60984586+46.81988780*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.239374278+.4267167058*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.280562047+.552876601*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.444010722-1.560620374*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-31.60984586+43.99146068*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.239374278-2.401710418*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-4.108989171+.552876601*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.384416402-1.560620374*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-34.43827298+43.99146068*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.589052846-2.401710418*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-4.108989171+3.381303725*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.384416402+1.267806750*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-34.43827298+46.81988780*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.589052846+.4267167058*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.381303725-1.280562047*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.4267167058+1.239374278*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
46.81988780-31.60984586*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.267806750+2.444010722*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.381303725-4.108989171*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.4267167058-1.589052846*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
46.81988780-34.43827298*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.267806750-.384416402*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.552876601-4.108989171*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-2.401710418-1.589052846*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
43.99146068-34.43827298*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.560620374-.384416402*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.552876601-1.280562047*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-2.401710418+1.239374278*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
43.99146068-31.60984586*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.560620374+2.444010722*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
34.43827298-43.99146068*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.589052846+2.401710418*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4.108989171-.552876601*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.384416402+1.560620374*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
34.43827298-46.81988780*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.589052846-.4267167058*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4.108989171-3.381303725*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.384416402-1.267806750*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
31.60984586-46.81988780*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.239374278-.4267167058*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.280562047-3.381303725*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-2.444010722-1.267806750*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
31.60984586-43.99146068*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.239374278+2.401710418*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.280562047-.552876601*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-2.444010722+1.560620374*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.444010722+1.560620374*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.280562047-.552876601*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.239374278+2.401710418*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-31.60984586-43.99146068*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.444010722-1.267806750*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.280562047-3.381303725*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.239374278-.4267167058*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-31.60984586-46.81988780*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.384416402-1.267806750*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-4.108989171-3.381303725*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.589052846-.4267167058*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-34.43827298-46.81988780*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.384416402+1.560620374*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-4.108989171-.552876601*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.589052846+2.401710418*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-34.43827298-43.99146068*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.560620374+2.444010722*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-43.99146068-31.60984586*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2.401710418+1.239374278*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.552876601-1.280562047*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.560620374-.384416402*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-43.99146068-34.43827298*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2.401710418-1.589052846*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.552876601-4.108989171*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.267806750-.384416402*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-46.81988780-34.43827298*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.4267167058-1.589052846*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.381303725-4.108989171*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.267806750+2.444010722*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-46.81988780-31.60984586*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.4267167058+1.239374278*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.381303725-1.280562047*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.589052846+.4267167058*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.43827298+46.81988780*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.384416402+1.267806750*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
4.108989171+3.381303725*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.589052846-2.401710418*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.43827298+43.99146068*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.384416402-1.560620374*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
4.108989171+.552876601*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.239374278-2.401710418*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
31.60984586+43.99146068*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-2.444010722-1.560620374*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.280562047+.552876601*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.239374278+.4267167058*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
31.60984586+46.81988780*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-2.444010722+1.267806750*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.280562047+3.381303725*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.4267167058+1.589052846*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
3.381303725+4.108989171*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.267806750+.384416402*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
46.81988780+34.43827298*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.4267167058-1.239374278*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
3.381303725+1.280562047*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.267806750-2.444010722*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
46.81988780+31.60984586*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-2.401710418-1.239374278*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.552876601+1.280562047*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.560620374-2.444010722*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
43.99146068+31.60984586*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-2.401710418+1.589052846*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.552876601+4.108989171*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.560620374+.384416402*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
43.99146068+34.43827298*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.381303725-1.280562047*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.4267167058+1.239374278*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
46.81988780-31.60984586*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.267806750+2.444010722*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.381303725-4.108989171*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.4267167058-1.589052846*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
46.81988780-34.43827298*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.267806750-.384416402*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.552876601-4.108989171*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-2.401710418-1.589052846*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
43.99146068-34.43827298*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.560620374-.384416402*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.552876601-1.280562047*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-2.401710418+1.239374278*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
43.99146068-31.60984586*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.560620374+2.444010722*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
34.43827298-43.99146068*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.589052846+2.401710418*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4.108989171-.552876601*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.384416402+1.560620374*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
34.43827298-46.81988780*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.589052846-.4267167058*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4.108989171-3.381303725*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.384416402-1.267806750*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
31.60984586-46.81988780*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.239374278-.4267167058*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.280562047-3.381303725*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-2.444010722-1.267806750*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
31.60984586-43.99146068*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.239374278+2.401710418*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.280562047-.552876601*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-2.444010722+1.560620374*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-43.99146068+34.43827298*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.560620374+.384416402*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.552876601+4.108989171*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.401710418+1.589052846*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-43.99146068+31.60984586*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.560620374-2.444010722*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.552876601+1.280562047*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.401710418-1.239374278*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-46.81988780+31.60984586*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.267806750-2.444010722*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.381303725+1.280562047*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.4267167058-1.239374278*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-46.81988780+34.43827298*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.267806750+.384416402*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.381303725+4.108989171*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.4267167058+1.589052846*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.280562047+3.381303725*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.444010722+1.267806750*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-31.60984586+46.81988780*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.239374278+.4267167058*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.280562047+.552876601*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.444010722-1.560620374*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-31.60984586+43.99146068*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.239374278-2.401710418*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-4.108989171+.552876601*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.384416402-1.560620374*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-34.43827298+43.99146068*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.589052846-2.401710418*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-4.108989171+3.381303725*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.384416402+1.267806750*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-34.43827298+46.81988780*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.589052846+.4267167058*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.589052846+.4267167058*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.43827298+46.81988780*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.384416402+1.267806750*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
4.108989171+3.381303725*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.589052846-2.401710418*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.43827298+43.99146068*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.384416402-1.560620374*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
4.108989171+.552876601*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.239374278-2.401710418*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
31.60984586+43.99146068*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-2.444010722-1.560620374*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.280562047+.552876601*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.239374278+.4267167058*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
31.60984586+46.81988780*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-2.444010722+1.267806750*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.280562047+3.381303725*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.4267167058+1.589052846*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
3.381303725+4.108989171*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.267806750+.384416402*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
46.81988780+34.43827298*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.4267167058-1.239374278*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
3.381303725+1.280562047*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.267806750-2.444010722*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
46.81988780+31.60984586*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-2.401710418-1.239374278*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.552876601+1.280562047*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.560620374-2.444010722*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
43.99146068+31.60984586*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-2.401710418+1.589052846*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.552876601+4.108989171*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.560620374+.384416402*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
43.99146068+34.43827298*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.444010722+1.560620374*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.280562047-.552876601*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.239374278+2.401710418*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-31.60984586-43.99146068*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.444010722-1.267806750*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.280562047-3.381303725*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.239374278-.4267167058*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-31.60984586-46.81988780*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.384416402-1.267806750*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-4.108989171-3.381303725*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.589052846-.4267167058*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-34.43827298-46.81988780*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-.384416402+1.560620374*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-4.108989171-.552876601*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.589052846+2.401710418*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-34.43827298-43.99146068*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.560620374+2.444010722*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-43.99146068-31.60984586*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2.401710418+1.239374278*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.552876601-1.280562047*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.560620374-.384416402*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-43.99146068-34.43827298*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2.401710418-1.589052846*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.552876601-4.108989171*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.267806750-.384416402*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-46.81988780-34.43827298*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.4267167058-1.589052846*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.381303725-4.108989171*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.267806750+2.444010722*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-46.81988780-31.60984586*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.4267167058+1.239374278*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.381303725-1.280562047*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-43.991460739515965, 34.43827305491785] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, 0.38441640190707305] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, 4.1089891749071095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, 1.5890528479992119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, 31.609845930171662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, -2.444010722839117] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, 1.2805620501609194] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, -1.2393742767469784] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, 31.609845930171662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, -2.444010722839117] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, 1.2805620501609194] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, -1.2393742767469784] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, 34.43827305491785] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, 0.38441640190707305] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, 4.1089891749071095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, 1.5890528479992119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, 3.3813037286208787] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, 1.2678067530707247] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, 46.81988786426215] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, 0.42671670668133976] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, 0.5528766038746884] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, -1.5606203716754656] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, 43.991460739515965] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, -2.4017104180648507] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, 0.5528766038746884] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, -1.5606203716754656] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, 43.991460739515965] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, -2.4017104180648507] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, 3.3813037286208787] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, 1.2678067530707247] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, 46.81988786426215] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, 0.42671670668133976] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, -1.2805620501609194] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, 1.2393742767469784] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, -31.609845930171662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, 2.444010722839117] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, -4.1089891749071095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, -1.5890528479992119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, -34.43827305491785] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, -0.38441640190707305] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, -4.1089891749071095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, -1.5890528479992119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, -34.43827305491785] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, -0.38441640190707305] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, -1.2805620501609194] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, 1.2393742767469784] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, -31.609845930171662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, 2.444010722839117] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, -43.991460739515965] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, 2.4017104180648507] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, -0.5528766038746884] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, 1.5606203716754656] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, -46.81988786426215] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, -0.42671670668133976] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, -3.3813037286208787] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, -1.2678067530707247] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, -46.81988786426215] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, -0.42671670668133976] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, -3.3813037286208787] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, -1.2678067530707247] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, -43.991460739515965] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, 2.4017104180648507] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, -0.5528766038746884] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, 1.5606203716754656] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, 1.5606203716754656] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, -0.5528766038746884] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, 2.4017104180648507] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, -43.991460739515965] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, -1.2678067530707247] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, -3.3813037286208787] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, -0.42671670668133976] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, -46.81988786426215] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, -1.2678067530707247] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, -3.3813037286208787] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, -0.42671670668133976] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, -46.81988786426215] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, 1.5606203716754656] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, -0.5528766038746884] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, 2.4017104180648507] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, -43.991460739515965] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, 2.444010722839117] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, -31.609845930171662] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, 1.2393742767469784] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, -1.2805620501609194] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, -0.38441640190707305] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, -34.43827305491785] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, -1.5890528479992119] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, -4.1089891749071095] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, -0.38441640190707305] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, -34.43827305491785] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, -1.5890528479992119] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, -4.1089891749071095] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, 2.444010722839117] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, -31.609845930171662] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, 1.2393742767469784] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, -1.2805620501609194] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, 0.42671670668133976] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, 46.81988786426215] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, 1.2678067530707247] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, 3.3813037286208787] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, -2.4017104180648507] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, 43.991460739515965] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, -1.5606203716754656] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, 0.5528766038746884] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, -2.4017104180648507] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, 43.991460739515965] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, -1.5606203716754656] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, 0.5528766038746884] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, 0.42671670668133976] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, 46.81988786426215] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, 1.2678067530707247] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, 3.3813037286208787] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, 1.5890528479992119] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, 4.1089891749071095] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, 0.38441640190707305] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, 34.43827305491785] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, -1.2393742767469784] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, 1.2805620501609194] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, -2.444010722839117] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, 31.609845930171662] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, -1.2393742767469784] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, 1.2805620501609194] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, -2.444010722839117] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, 31.609845930171662] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, 1.5890528479992119] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, 4.1089891749071095] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, 0.38441640190707305] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, 34.43827305491785] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, -1.2805620501609194] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, 1.2393742767469784] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, -31.609845930171662] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, 2.444010722839117] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, -4.1089891749071095] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, -1.5890528479992119] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, -34.43827305491785] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, -0.38441640190707305] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, -4.1089891749071095] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, -1.5890528479992119] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, -34.43827305491785] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, -0.38441640190707305] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, -1.2805620501609194] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, 1.2393742767469784] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, -31.609845930171662] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, 2.444010722839117] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, -43.991460739515965] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, 2.4017104180648507] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, -0.5528766038746884] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, 1.5606203716754656] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, -46.81988786426215] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, -0.42671670668133976] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, -3.3813037286208787] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, -1.2678067530707247] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, -46.81988786426215] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, -0.42671670668133976] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, -3.3813037286208787] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, -1.2678067530707247] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, -43.991460739515965] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, 2.4017104180648507] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, -0.5528766038746884] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, 1.5606203716754656] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, 34.43827305491785] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, 0.38441640190707305] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, 4.1089891749071095] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, 1.5890528479992119] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, 31.609845930171662] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, -2.444010722839117] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, 1.2805620501609194] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, -1.2393742767469784] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, 31.609845930171662] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, -2.444010722839117] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, 1.2805620501609194] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, -1.2393742767469784] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, 34.43827305491785] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, 0.38441640190707305] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, 4.1089891749071095] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, 1.5890528479992119] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, 3.3813037286208787] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, 1.2678067530707247] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, 46.81988786426215] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, 0.42671670668133976] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, 0.5528766038746884] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, -1.5606203716754656] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, 43.991460739515965] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, -2.4017104180648507] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, 0.5528766038746884] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, -1.5606203716754656] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, 43.991460739515965] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, -2.4017104180648507] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, 3.3813037286208787] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, 1.2678067530707247] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, 46.81988786426215] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, 0.42671670668133976] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, 0.42671670668133976] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, 46.81988786426215] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, 1.2678067530707247] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, 3.3813037286208787] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5890528479992119, -2.4017104180648507] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[34.43827305491785, 43.991460739515965] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.38441640190707305, -1.5606203716754656] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[4.1089891749071095, 0.5528766038746884] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, -2.4017104180648507] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, 43.991460739515965] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, -1.5606203716754656] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, 0.5528766038746884] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2393742767469784, 0.42671670668133976] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[31.609845930171662, 46.81988786426215] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.444010722839117, 1.2678067530707247] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2805620501609194, 3.3813037286208787] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, 1.5890528479992119] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, 4.1089891749071095] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, 0.38441640190707305] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, 34.43827305491785] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.42671670668133976, -1.2393742767469784] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.3813037286208787, 1.2805620501609194] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2678067530707247, -2.444010722839117] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[46.81988786426215, 31.609845930171662] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, -1.2393742767469784] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, 1.2805620501609194] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, -2.444010722839117] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, 31.609845930171662] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4017104180648507, 1.5890528479992119] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.5528766038746884, 4.1089891749071095] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5606203716754656, 0.38441640190707305] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[43.991460739515965, 34.43827305491785] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, 1.5606203716754656] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, -0.5528766038746884] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, 2.4017104180648507] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, -43.991460739515965] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.444010722839117, -1.2678067530707247] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2805620501609194, -3.3813037286208787] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2393742767469784, -0.42671670668133976] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-31.609845930171662, -46.81988786426215] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, -1.2678067530707247] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, -3.3813037286208787] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, -0.42671670668133976] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, -46.81988786426215] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38441640190707305, 1.5606203716754656] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.1089891749071095, -0.5528766038746884] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5890528479992119, 2.4017104180648507] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-34.43827305491785, -43.991460739515965] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, 2.444010722839117] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, -31.609845930171662] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, 1.2393742767469784] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, -1.2805620501609194] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5606203716754656, -0.38441640190707305] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-43.991460739515965, -34.43827305491785] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.4017104180648507, -1.5890528479992119] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5528766038746884, -4.1089891749071095] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, -0.38441640190707305] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, -34.43827305491785] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, -1.5890528479992119] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, -4.1089891749071095] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.2678067530707247, 2.444010722839117] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-46.81988786426215, -31.609845930171662] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.42671670668133976, 1.2393742767469784] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.3813037286208787, -1.2805620501609194] <- {Rule[a, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
4.20.E14 ${\displaystyle{\displaystyle w=(1/a)\tan\left(az+c\right)}}$ w =(1/ a)* tan(a*z + c) w =(1/ a)* Tan[a*z + c] Failure Failure
Fail
1.060642513+1.060651152*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.097992560+1.014214371*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.770353735+1.772853405*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.045061232+1.116024928*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060642513-1.767775972*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.097992560-1.814212753*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.770353735-1.055573719*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.045061232-1.712402196*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767784611-1.767775972*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.730434564-1.814212753*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.058073389-1.055573719*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.783365892-1.712402196*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767784611+1.060651152*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.730434564+1.014214371*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.058073389+1.772853405*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.783365892+1.116024928*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.055573719+1.058073389*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.814212753+1.730434564*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767775972+1.767784611*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.712402196+1.783365892*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.055573719-1.770353735*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.814212753-1.097992560*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767775972-1.060642513*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.712402196-1.045061232*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.772853405-1.770353735*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.014214371-1.097992560*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060651152-1.060642513*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.116024928-1.045061232*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.772853405+1.058073389*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.014214371+1.730434564*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060651152+1.767784611*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.116024928+1.783365892*I <- {a = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.058073389+1.055573719*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.783365892+1.712402196*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767784611+1.767775972*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.730434564+1.814212753*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.058073389-1.772853405*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.783365892-1.116024928*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767784611-1.060651152*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.730434564-1.014214371*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.770353735-1.772853405*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.045061232-1.116024928*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060642513-1.060651152*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.097992560-1.014214371*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.770353735+1.055573719*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.045061232+1.712402196*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060642513+1.767775972*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.097992560+1.814212753*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060651152+1.060642513*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.116024928+1.045061232*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.772853405+1.770353735*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.014214371+1.097992560*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060651152-1.767784611*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.116024928-1.783365892*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.772853405-1.058073389*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.014214371-1.730434564*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767775972-1.767784611*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.712402196-1.783365892*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.055573719-1.058073389*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.814212753-1.730434564*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767775972+1.060642513*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.712402196+1.045061232*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.055573719+1.770353735*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.814212753+1.097992560*I <- {a = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.814212753+1.097992560*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.055573719+1.770353735*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.712402196+1.045061232*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767775972+1.060642513*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.814212753-1.730434564*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.055573719-1.058073389*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.712402196-1.783365892*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767775972-1.767784611*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.014214371-1.730434564*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.772853405-1.058073389*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.116024928-1.783365892*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060651152-1.767784611*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.014214371+1.097992560*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.772853405+1.770353735*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.116024928+1.045061232*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060651152+1.060642513*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.097992560+1.814212753*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060642513+1.767775972*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.045061232+1.712402196*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.770353735+1.055573719*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.097992560-1.014214371*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060642513-1.060651152*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.045061232-1.116024928*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.770353735-1.772853405*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.730434564-1.014214371*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767784611-1.060651152*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.783365892-1.116024928*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.058073389-1.772853405*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.730434564+1.814212753*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767784611+1.767775972*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.783365892+1.712402196*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.058073389+1.055573719*I <- {a = 2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.116024928+1.783365892*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060651152+1.767784611*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.014214371+1.730434564*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.772853405+1.058073389*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.116024928-1.045061232*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060651152-1.060642513*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.014214371-1.097992560*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.772853405-1.770353735*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.712402196-1.045061232*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767775972-1.060642513*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.814212753-1.097992560*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.055573719-1.770353735*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.712402196+1.783365892*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767775972+1.767784611*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.814212753+1.730434564*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.055573719+1.058073389*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.783365892+1.116024928*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.058073389+1.772853405*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.730434564+1.014214371*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767784611+1.060651152*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.783365892-1.712402196*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.058073389-1.055573719*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.730434564-1.814212753*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767784611-1.767775972*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.045061232-1.712402196*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.770353735-1.055573719*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.097992560-1.814212753*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060642513-1.767775972*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.045061232+1.116024928*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.770353735+1.772853405*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.097992560+1.014214371*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060642513+1.060651152*I <- {a = 2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.058073389+1.055573719*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.783365892+1.712402196*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767784611+1.767775972*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.730434564+1.814212753*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.058073389-1.772853405*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.783365892-1.116024928*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767784611-1.060651152*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.730434564-1.014214371*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.770353735-1.772853405*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.045061232-1.116024928*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060642513-1.060651152*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.097992560-1.014214371*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.770353735+1.055573719*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.045061232+1.712402196*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060642513+1.767775972*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.097992560+1.814212753*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060651152+1.060642513*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.116024928+1.045061232*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.772853405+1.770353735*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.014214371+1.097992560*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060651152-1.767784611*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.116024928-1.783365892*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.772853405-1.058073389*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.014214371-1.730434564*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767775972-1.767784611*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.712402196-1.783365892*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.055573719-1.058073389*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.814212753-1.730434564*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767775972+1.060642513*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.712402196+1.045061232*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.055573719+1.770353735*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.814212753+1.097992560*I <- {a = -2^(1/2)-I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060642513+1.060651152*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.097992560+1.014214371*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.770353735+1.772853405*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.045061232+1.116024928*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.060642513-1.767775972*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.097992560-1.814212753*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.770353735-1.055573719*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.045061232-1.712402196*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767784611-1.767775972*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.730434564-1.814212753*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.058073389-1.055573719*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.783365892-1.712402196*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.767784611+1.060651152*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.730434564+1.014214371*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.058073389+1.772853405*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.783365892+1.116024928*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.055573719+1.058073389*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.814212753+1.730434564*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767775972+1.767784611*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.712402196+1.783365892*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.055573719-1.770353735*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.814212753-1.097992560*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.767775972-1.060642513*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.712402196-1.045061232*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.772853405-1.770353735*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.014214371-1.097992560*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060651152-1.060642513*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.116024928-1.045061232*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.772853405+1.058073389*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.014214371+1.730434564*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.060651152+1.767784611*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.116024928+1.783365892*I <- {a = -2^(1/2)-I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.116024928+1.783365892*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060651152+1.767784611*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.014214371+1.730434564*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.772853405+1.058073389*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.116024928-1.045061232*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060651152-1.060642513*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.014214371-1.097992560*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.772853405-1.770353735*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.712402196-1.045061232*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767775972-1.060642513*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.814212753-1.097992560*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.055573719-1.770353735*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.712402196+1.783365892*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767775972+1.767784611*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.814212753+1.730434564*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.055573719+1.058073389*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.783365892+1.116024928*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.058073389+1.772853405*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.730434564+1.014214371*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767784611+1.060651152*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.783365892-1.712402196*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.058073389-1.055573719*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.730434564-1.814212753*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767784611-1.767775972*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.045061232-1.712402196*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.770353735-1.055573719*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.097992560-1.814212753*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060642513-1.767775972*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.045061232+1.116024928*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.770353735+1.772853405*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.097992560+1.014214371*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060642513+1.060651152*I <- {a = -2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.814212753+1.097992560*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.055573719+1.770353735*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.712402196+1.045061232*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767775972+1.060642513*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.814212753-1.730434564*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.055573719-1.058073389*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.712402196-1.783365892*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.767775972-1.767784611*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.014214371-1.730434564*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.772853405-1.058073389*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.116024928-1.783365892*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060651152-1.767784611*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.014214371+1.097992560*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.772853405+1.770353735*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.116024928+1.045061232*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.060651152+1.060642513*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.097992560+1.814212753*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060642513+1.767775972*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.045061232+1.712402196*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.770353735+1.055573719*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1.097992560-1.014214371*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.060642513-1.060651152*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.045061232-1.116024928*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.770353735-1.772853405*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.730434564-1.014214371*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767784611-1.060651152*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.783365892-1.116024928*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.058073389-1.772853405*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.730434564+1.814212753*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.767784611+1.767775972*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.783365892+1.712402196*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.058073389+1.055573719*I <- {a = -2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
Skip
4.21.E1 ${\displaystyle{\displaystyle\sin u+\cos u=\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi% \right)}}$ sin(u)+ cos(u)=sqrt(2)*sin(u +(1)/(4)*Pi) Sin[u]+ Cos[u]=Sqrt[2]*Sin[u +Divide[1,4]*Pi] Successful Successful - -
4.21.E1 ${\displaystyle{\displaystyle\sin u-\cos u=\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi% \right)}}$ sin(u)- cos(u)=sqrt(2)*sin(u -(1)/(4)*Pi) Sin[u]- Cos[u]=Sqrt[2]*Sin[u -Divide[1,4]*Pi] Successful Successful - -
4.21.E1 ${\displaystyle{\displaystyle\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi\right)=+\sqrt{% 2}\cos\left(u-\tfrac{1}{4}\pi\right)}}$ sqrt(2)*sin(u +(1)/(4)*Pi)= +sqrt(2)*cos(u -(1)/(4)*Pi) Sqrt[2]*Sin[u +Divide[1,4]*Pi]= +Sqrt[2]*Cos[u -Divide[1,4]*Pi] Successful Successful - -
4.21.E1 ${\displaystyle{\displaystyle\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi\right)=-\sqrt{% 2}\cos\left(u+\tfrac{1}{4}\pi\right)}}$ sqrt(2)*sin(u -(1)/(4)*Pi)= -sqrt(2)*cos(u +(1)/(4)*Pi) Sqrt[2]*Sin[u -Divide[1,4]*Pi]= -Sqrt[2]*Cos[u +Divide[1,4]*Pi] Successful Successful - -
4.21.E2 ${\displaystyle{\displaystyle\sin\left(u+v\right)=\sin u\cos v+\cos u\sin v}}$ sin(u + v)= sin(u)*cos(v)+ cos(u)*sin(v) Sin[u + v]= Sin[u]*Cos[v]+ Cos[u]*Sin[v] Successful Successful - -
4.21.E2 ${\displaystyle{\displaystyle\sin\left(u-v\right)=\sin u\cos v-\cos u\sin v}}$ sin(u - v)= sin(u)*cos(v)- cos(u)*sin(v) Sin[u - v]= Sin[u]*Cos[v]- Cos[u]*Sin[v] Successful Successful - -
4.21.E3 ${\displaystyle{\displaystyle\cos\left(u+v\right)=\cos u\cos v-\sin u\sin v}}$ cos(u + v)= cos(u)*cos(v)- sin(u)*sin(v) Cos[u + v]= Cos[u]*Cos[v]- Sin[u]*Sin[v] Successful Successful - -
4.21.E3 ${\displaystyle{\displaystyle\cos\left(u-v\right)=\cos u\cos v+\sin u\sin v}}$ cos(u - v)= cos(u)*cos(v)+ sin(u)*sin(v) Cos[u - v]= Cos[u]*Cos[v]+ Sin[u]*Sin[v] Successful Successful - -
4.21.E4 ${\displaystyle{\displaystyle\tan\left(u+v\right)=\frac{\tan u+\tan v}{1-\tan u% \tan v}}}$ tan(u + v)=(tan(u)+ tan(v))/(1 - tan(u)*tan(v)) Tan[u + v]=Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]] Successful Successful - -
4.21.E4 ${\displaystyle{\displaystyle\tan\left(u-v\right)=\frac{\tan u-\tan v}{1+\tan u% \tan v}}}$ tan(u - v)=(tan(u)- tan(v))/(1 + tan(u)*tan(v)) Tan[u - v]=Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]] Successful Successful - -
4.21.E5 ${\displaystyle{\displaystyle\cot\left(u+v\right)=\frac{+\cot u\cot v-1}{\cot u% +\cot v}}}$ cot(u + v)=(+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v)) Cot[u + v]=Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]] Successful Successful - -
4.21.E5 ${\displaystyle{\displaystyle\cot\left(u-v\right)=\frac{-\cot u\cot v-1}{\cot u% -\cot v}}}$ cot(u - v)=(- cot(u)*cot(v)- 1)/(cot(u)- cot(v)) Cot[u - v]=Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]] Successful Successful - -
4.21.E6