Definition:Int

From DRMF
Jump to navigation Jump to search

In the DRMF, the LaTeX semantic macro \Int represents the definite integral notation, which is defined as follows.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\Int{a}{b} produces ∫ a b semantic-definite-integral π‘Ž 𝑏 {\displaystyle{\displaystyle{\displaystyle\int_{a}^{b}}}}
\Int{a}{b}@{x}{f(x)} produces ∫ a b ⁑ f ⁒ ( x ) ⁒ d ⁒ x semantic-definite-integral π‘Ž 𝑏 π‘₯ 𝑓 π‘₯ {\displaystyle{\displaystyle{\displaystyle\int_{a}^{b}{f(x)}\,{\mathrm{d}}x}}}

These are defined by J Ξ½ ( 1 ) ⁑ ( z ; q ) := ( q Ξ½ + 1 ; q ) ∞ ( q ; q ) ∞ ⁒ ( z 2 ) Ξ½ ⁒ \qHyperrphis ⁒ 21 ⁒ @ ⁒ @ ⁒ 0 , 0 ⁒ q Ξ½ + 1 ⁒ q - z 2 4 . assign Jackson-q-Bessel-1-J 𝜈 𝑧 π‘ž q-Pochhammer-symbol superscript π‘ž 𝜈 1 π‘ž q-Pochhammer-symbol π‘ž π‘ž superscript 𝑧 2 𝜈 \qHyperrphis 21 @ @ 0 0 superscript π‘ž 𝜈 1 π‘ž superscript 𝑧 2 4 {\displaystyle{\displaystyle{\displaystyle J^{(1)}_{\nu}\!\left(z;q\right):=% \frac{\left(q^{\nu+1};q\right)_{\infty}}{\left(q;q\right)_{\infty}}\left(\frac% {z}{2}\right)^{\nu}\,\qHyperrphis{2}{1}@@{0,0}{q^{\nu+1}}{q}{-\frac{z^{2}}{4}}% .}}}

Symbols List

∫ a b f ⁒ ( x ) ⁒ d x superscript subscript π‘Ž 𝑏 𝑓 π‘₯ differential-d π‘₯ {\displaystyle{\displaystyle{\displaystyle\int_{a}^{b}f(x){\mathrm{d}}\!x}}}  : semantic definite integral : http://drmf.wmflabs.org/wiki/Definition:Int
J q ( 1 ) subscript superscript 𝐽 1 π‘ž {\displaystyle{\displaystyle{\displaystyle J^{(1)}_{q}}}}  : Jackson q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Bessel function 1 : http://drmf.wmflabs.org/wiki/Definition:JacksonqBesselI
( a ; q ) n subscript π‘Ž π‘ž 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Ο• s r subscript subscript italic-Ο• 𝑠 π‘Ÿ {\displaystyle{\displaystyle{\displaystyle{{}_{r}\phi_{s}}}}}  : basic hypergeometric (or q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -hypergeometric) function : http://dlmf.nist.gov/17.4#E1