Definition:ctsdualHahn

From DRMF
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \ctsdualHahn represents the Continuous Dual Hahn polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsdualHahn{n} produces S n continuous-dual-Hahn-normalized-S 𝑛 {\displaystyle{\displaystyle{\displaystyle S_{n}}}}
\ctsdualHahn{n}@{x^2}{a}{b}{c} produces S n ⁑ ( x 2 ; a , b , c ) continuous-dual-Hahn-normalized-S 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x^{2};a,b,c\right)}}}
\ctsdualHahn{n}@@{x^2}{a}{b}{c} produces S n ⁑ ( x 2 ) continuous-dual-Hahn-normalized-S 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 {\displaystyle{\displaystyle{\displaystyle S_{n}\!\left(x^{2}\right)}}}

These are defined by S n ⁑ ( x 2 ; a , b , c ) ( a + b ) n ⁒ ( a + c ) n := \HyperpFq ⁒ 32 ⁒ @ ⁒ @ - n , a + i ⁒ x , a - i ⁒ x ⁒ a + b , a + c ⁒ 1 assign continuous-dual-Hahn-normalized-S 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 Pochhammer-symbol π‘Ž 𝑏 𝑛 Pochhammer-symbol π‘Ž 𝑐 𝑛 \HyperpFq 32 @ @ 𝑛 π‘Ž 𝑖 π‘₯ π‘Ž 𝑖 π‘₯ π‘Ž 𝑏 π‘Ž 𝑐 1 {\displaystyle{\displaystyle{\displaystyle\frac{S_{n}\!\left(x^{2};a,b,c\right% )}{{\left(a+b\right)_{n}}{\left(a+c\right)_{n}}}:=\HyperpFq{3}{2}@@{-n,a+ix,a-% ix}{a+b,a+c}{1}}}}

Symbols List

S n subscript 𝑆 𝑛 {\displaystyle{\displaystyle{\displaystyle S_{n}}}}  : continuous dual Hahn polynomial : http://dlmf.nist.gov/18.25#T1.t1.r3
( a ) n subscript π‘Ž 𝑛 {\displaystyle{\displaystyle{\displaystyle(a)_{n}}}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
F q p subscript subscript 𝐹 π‘ž 𝑝 {\displaystyle{\displaystyle{\displaystyle{{}_{p}F_{q}}}}}  : generalized hypergeometric function : http://dlmf.nist.gov/16.2#E1