Definition:f

From DRMF
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \f represents Function.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\f{f} produces Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \fin 1:31"): {\displaystyle {\displaystyle \f{f}}}
\f{f}@{x} produces Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \fin 1:31"): {\displaystyle {\displaystyle \f{f}@{x}}}

These are defined by

Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \GenGegenbauerin 2:1"): {\displaystyle \GenGegenbauer{\alpha}{\beta}{2m}@{x}:={\rm const}\times \Jacobi{\alpha}{\beta}{m}@{2x^2-1}, }

Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \GenGegenbauerin 2:1"): {\displaystyle \GenGegenbauer{\alpha}{\beta}{2m+1}@{x}:={\rm const}\times x\,\Jacobi{\alpha}{\beta+1}{m}@{2x^2-1}. }

Then for , we have the orthogonality relation

Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \GenGegenbauerin 2:13"): {\displaystyle \int_{-1}^1 \GenGegenbauer{\alpha}{\beta}{m}@{x}\,\GenGegenbauer{\alpha}{\beta}{n}@{x}\,|x|^{2\beta+1} (1-x^2)^\alpha\,dx=0, }

for .

Symbols List

 : function : http://drmf.wmflabs.org/wiki/Definition:f
 : Generalized Gegenbauer polynomial : http://drmf.wmflabs.org/wiki/Definition:GenGegenbauer
 : Jacobi polynomial : http://dlmf.nist.gov/18.3#T1.t1.r3
 : integral : http://dlmf.nist.gov/1.4#iv