# Definition:monicctsqLegendre

The LaTeX DLMF and DRMF macro \monicctsqLegendre represents the monic continuous $\displaystyle q$ Legendre polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\monicctsqLegendre{n} produces $\displaystyle {\displaystyle \monicctsqLegendre{n}}$
\monicctsqLegendre{n}@{x}{q} produces $\displaystyle {\displaystyle \monicctsqLegendre{n}@{x}{q}}$
\monicctsqLegendre{n}@@{x}{q} produces $\displaystyle {\displaystyle \monicctsqLegendre{n}@@{x}{q}}$

These are defined by $\displaystyle {\displaystyle \ctsqLegendre{n}@{x}{q}=:\frac{2^nq^{\frac{1}{4}n}\qPochhammer{q^{\frac{1}{2}}}{q}{n}}{\qPochhammer{q}{q}{n}}\monicctsqLegendre{n}@@{x}{q}. }$

## Symbols List

$\displaystyle {\displaystyle {\widehat P}_{n}}$  : monic continuous $\displaystyle {\displaystyle q}$ -Legendre polynomial : http://drmf.wmflabs.org/wiki/Definition:monicctsqLegendre
$\displaystyle {\displaystyle P_{n}}$  : continuous $\displaystyle {\displaystyle q}$ -Legendre polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqLegendre
$\displaystyle {\displaystyle (a;q)_n}$  : $\displaystyle {\displaystyle q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1