Definition:normWilsonWtilde

From DRMF
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \normWilsonWtilde represents the normalized Wilson polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\normWilsonWtilde{n} produces W ~ n Wilson-polynomial-normalized-W-tilde 𝑛 {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}_{n}}}}
\normWilsonWtilde{n}@{x^2}{a}{b}{c}{d} produces W ~ n ⁑ ( x 2 ; a , b , c , d ) Wilson-polynomial-normalized-W-tilde 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 𝑑 {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}_{n}\!\left(x^{2};a,b,c,d% \right)}}}
\normWilsonWtilde{n}@@{x^2}{a}{b}{c}{d} produces W ~ n ⁑ ( x 2 ) Wilson-polynomial-normalized-W-tilde 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 𝑑 {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}_{n}\!\left(x^{2}\right)}}}

These are defined by [1]

W ~ n ⁑ ( x 2 ; a , b , c , d ) := W n ⁑ ( x 2 ; a , b , c , d ) ( a + b ) n ⁒ ( a + c ) n ⁒ ( a + d ) n assign Wilson-polynomial-normalized-W-tilde 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 𝑑 Wilson-polynomial-W 𝑛 superscript π‘₯ 2 π‘Ž 𝑏 𝑐 𝑑 Pochhammer-symbol π‘Ž 𝑏 𝑛 Pochhammer-symbol π‘Ž 𝑐 𝑛 Pochhammer-symbol π‘Ž 𝑑 𝑛 {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}_{n}\!\left(x^{2};a,b,c,d% \right):=\frac{W_{n}\!\left(x^{2};a,b,c,d\right)}{{\left(a+b\right)_{n}}{\left% (a+c\right)_{n}}{\left(a+d\right)_{n}}}}}}

Symbols List

W ~ n subscript ~ π‘Š 𝑛 {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}_{n}}}}  : normalized Wilson polynomial W ~ ~ π‘Š {\displaystyle{\displaystyle{\displaystyle{\tilde{W}}}}}  : http://drmf.wmflabs.org/wiki/Definition:normWilsonWtilde
W n subscript π‘Š 𝑛 {\displaystyle{\displaystyle{\displaystyle W_{n}}}}  : Wilson polynomial : http://dlmf.nist.gov/18.25#T1.t1.r2
( a ) n subscript π‘Ž 𝑛 {\displaystyle{\displaystyle{\displaystyle(a)_{n}}}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii