Definition:normctsHahnptilde

The LaTeX DLMF and DRMF macro \normctsHahnptilde represents the normalized continuous Hahn polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\normctsHahnptilde{n} produces $\displaystyle \normctsHahnptilde{n}$
\normctsHahnptilde{n}@{x}{a}{b}{c}{d} produces $\displaystyle \normctsHahnptilde{n}@{x}{a}{b}{c}{d}$
\normctsHahnptilde{n}@@{x}{a}{b}{c}{d} produces $\displaystyle \normctsHahnptilde{n}@@{x}{a}{b}{c}{d}$

These are defined by 

$\displaystyle \normctsHahnptilde{n}@@{x}{a}{b}{c}{d}:=\normctsHahnptilde{n}@{x}{a}{b}{c}{d}=\frac{n!}{i^n\pochhammer{a+c}{n}\pochhammer{a+d}{n}}\ctsHahn{n}@{x}{a}{b}{c}{d}.$

Symbols List

${\tilde {p}}_{n}}$ : normalized continuous Hahn polynomial ${\tilde {p}}}$ : http://drmf.wmflabs.org/wiki/Definition:normctsHahnptilde
$(a)_{n}}$ : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
$p_{n}}$ : continuous Hahn polynomial : http://dlmf.nist.gov/18.19#P2.p1