Definition:qexpKLS

The LaTeX DLMF and DRMF macro \qexpKLS represents a $q$ -analogue of the $\exp$ function: $\displaystyle \qexpKLS{q}$ .

This macro is in the category of real or complex valued functions.

In math mode, this macro can be called in the following ways:

\qexpKLS{q} produces $\displaystyle \qexpKLS{q}$
\qexpKLS{q}@{z} produces $\displaystyle \qexpKLS{q}@{z}$
\qexpKLS{q}@@{z} produces $\displaystyle \qexpKLS{q}@@{z}$

These are defined by $\displaystyle \qexpKLS{q}@{z}:=\qHyperrphis{1}{0}@@{0}{-}{q}{z}:=\sum_{n=0}^{\infty}\frac{z^n}{\qPochhammer{q}{q}{n}} =\frac{1}{\qPochhammer{z}{q}{\infty}},\quad 0<|q|<1$

Symbols List

$\mathrm {e} _{q}}$ : $q}$ -analogue of the $\exp }$ function used in KLS: $\mathrm {e} _{q}}$ : http://drmf.wmflabs.org/wiki/Definition:qexpKLS
$\mathrm {exp} }$ : exponential function : http://dlmf.nist.gov/4.2#E19
${{}_{r}\phi _{s}}}$ : basic hypergeometric (or $q}$ -hypergeometric) function : http://dlmf.nist.gov/17.4#E1
$\Sigma }$ : sum : http://drmf.wmflabs.org/wiki/Definition:sum
$(a;q)_{n}}$ : $q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1