Definition and Expansions

From DRMF
Jump to navigation Jump to search

Definition and Expansions

Definition

\RiemannZeta ⁒ @ ⁒ s = βˆ‘ n = 1 ∞ 1 n s \RiemannZeta @ 𝑠 superscript subscript 𝑛 1 1 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\sum_{n=1}^{\infty}% \frac{1}{n^{s}}}}} {\displaystyle \RiemannZeta@{s} = \sum_{n=1}^\infty \frac{1}{n^s} }

Constraint(s): β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}}


Other Infinite Series

\RiemannZeta ⁒ @ ⁒ s = 1 1 - 2 - s ⁒ βˆ‘ n = 0 ∞ 1 ( 2 ⁒ n + 1 ) s \RiemannZeta @ 𝑠 1 1 superscript 2 𝑠 superscript subscript 𝑛 0 1 superscript 2 𝑛 1 𝑠 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{1-2^{-s}}% \sum_{n=0}^{\infty}\frac{1}{(2n+1)^{s}}}}} {\displaystyle \RiemannZeta@{s} = \frac{1}{1 - 2^{-s}} \sum_{n=0}^\infty \frac{1}{(2n+1)^s} }

Constraint(s): β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}}


\RiemannZeta ⁒ @ ⁒ s = 1 1 - 2 1 - s ⁒ βˆ‘ n = 1 ∞ ( - 1 ) n - 1 n s \RiemannZeta @ 𝑠 1 1 superscript 2 1 𝑠 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{1-2^{1-s}}% \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^{s}}}}} {\displaystyle \RiemannZeta@{s} = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^\infty \frac{\opminus^{n-1}}{n^s} }

Constraint(s): β„œ ⁑ s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}}


\RiemannZeta ⁒ @ ⁒ s = 1 s - 1 + βˆ‘ n = 0 ∞ ( - 1 ) n n ! ⁒ Ξ³ n ⁒ ( s - 1 ) n \RiemannZeta @ 𝑠 1 𝑠 1 superscript subscript 𝑛 0 superscript 1 𝑛 𝑛 Stieltjes-constants 𝑛 superscript 𝑠 1 𝑛 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{s-1}+\sum_% {n=0}^{\infty}\frac{(-1)^{n}}{n!}\gamma_{n}(s-1)^{n}}}} {\displaystyle \RiemannZeta@{s} = \frac{1}{s-1} + \sum_{n=0}^\infty \frac{\opminus^n}{n!} \StieltjesConstants{n} (s-1)^n }

Constraint(s): β„œ ⁑ s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}}


\RiemannZeta β€² ⁒ @ ⁒ s = - βˆ‘ n = 2 ∞ ( ln ⁑ n ) ⁒ n - s superscript \RiemannZeta β€² @ 𝑠 superscript subscript 𝑛 2 𝑛 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta^{\prime}@{s}=-\sum_{n=2% }^{\infty}(\ln n)n^{-s}}}} {\displaystyle \RiemannZeta'@{s} = - \sum_{n=2}^\infty (\ln@@{n}) n^{-s} }

Constraint(s): β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}}


\RiemannZeta ( k ) ⁒ @ ⁒ s = ( - 1 ) k ⁒ βˆ‘ n = 2 ∞ ( ln ⁑ n ) k ⁒ n - s superscript \RiemannZeta π‘˜ @ 𝑠 superscript 1 π‘˜ superscript subscript 𝑛 2 superscript 𝑛 π‘˜ superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta^{(k)}@{s}=(-1)^{k}\sum_% {n=2}^{\infty}(\ln n)^{k}n^{-s}}}} {\displaystyle \RiemannZeta^{(k)}@{s} = \opminus^k \sum_{n=2}^\infty (\ln@@{n})^k n^{-s} }

Constraint(s): β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} &
k = 1 , 2 , 3 , … π‘˜ 1 2 3 … {\displaystyle{\displaystyle{\displaystyle k=1,2,3,\dots}}}


Representations by the Euler-Maclaurin Formula

\RiemannZeta ⁒ @ ⁒ s = βˆ‘ k = 1 N 1 k s + N 1 - s s - 1 - s ⁒ ∫ N ∞ x - ⌊ x βŒ‹ x s + 1 ⁒ d x \RiemannZeta @ 𝑠 superscript subscript π‘˜ 1 𝑁 1 superscript π‘˜ 𝑠 superscript 𝑁 1 𝑠 𝑠 1 𝑠 superscript subscript 𝑁 π‘₯ π‘₯ superscript π‘₯ 𝑠 1 π‘₯ {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\sum_{k=1}^{N}\frac% {1}{k^{s}}+\frac{N^{1-s}}{s-1}-s\int_{N}^{\infty}\frac{x-\left\lfloor x\right% \rfloor}{x^{s+1}}\mathrm{d}x}}} {\displaystyle \RiemannZeta@{s} = \sum_{k=1}^N \frac{1}{k^s} + \frac{N^{1-s}}{s-1} - s \int_N^\infty \frac{x-\floor{x}}{x^{s+1}} \diff{x} }

Constraint(s): β„œ ⁑ s > 0 𝑠 0 {\displaystyle{\displaystyle{\displaystyle\Re{s}>0}}} &
N = 1 , 2 , 3 , … 𝑁 1 2 3 … {\displaystyle{\displaystyle{\displaystyle N=1,2,3,\dots}}}


\RiemannZeta ⁒ @ ⁒ s = βˆ‘ k = 1 N 1 k s + N 1 - s s - 1 - 1 2 ⁒ N - s + βˆ‘ k = 1 n ( s + 2 ⁒ k - 2 2 ⁒ k - 1 ) ⁒ \BernoulliB ⁒ 2 ⁒ k 2 ⁒ k ⁒ N 1 - s - 2 ⁒ k - ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ ∫ N ∞ \PeriodicBernoulliB ⁒ 2 ⁒ n + 1 ⁒ @ ⁒ x x s + 2 ⁒ n + 1 ⁒ d x \RiemannZeta @ 𝑠 superscript subscript π‘˜ 1 𝑁 1 superscript π‘˜ 𝑠 superscript 𝑁 1 𝑠 𝑠 1 1 2 superscript 𝑁 𝑠 superscript subscript π‘˜ 1 𝑛 binomial 𝑠 2 π‘˜ 2 2 π‘˜ 1 \BernoulliB 2 π‘˜ 2 π‘˜ superscript 𝑁 1 𝑠 2 π‘˜ binomial 𝑠 2 𝑛 2 𝑛 1 superscript subscript 𝑁 \PeriodicBernoulliB 2 𝑛 1 @ π‘₯ superscript π‘₯ 𝑠 2 𝑛 1 π‘₯ {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\sum_{k=1}^{N}\frac% {1}{k^{s}}+\frac{N^{1-s}}{s-1}-\frac{1}{2}N^{-s}+\sum_{k=1}^{n}\genfrac{(}{)}{% 0.0pt}{}{s+2k-2}{2k-1}\frac{\BernoulliB{2k}}{2k}N^{1-s-2k}-\genfrac{(}{)}{0.0% pt}{}{s+2n}{2n+1}\int_{N}^{\infty}\frac{\PeriodicBernoulliB{2n+1}@{x}}{x^{s+2n% +1}}\mathrm{d}x}}} {\displaystyle \RiemannZeta@{s} = \sum_{k=1}^N \frac{1}{k^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + \sum_{k=1}^n \binom{s+2k-2}{2k-1} \frac{\BernoulliB{2k}}{2k} N^{1-s-2k} - \binom{s+2n}{2n+1} \int_N^\infty \frac{\PeriodicBernoulliB{2n+1}@{x}}{x^{s+2n+1}} \diff{x} }

Constraint(s): β„œ ⁑ s > - 2 ⁒ n 𝑠 2 𝑛 {\displaystyle{\displaystyle{\displaystyle\Re{s}>-2n}}} &
n , N = 1 , 2 , 3 , … formulae-sequence 𝑛 𝑁 1 2 3 … {\displaystyle{\displaystyle{\displaystyle n,N=1,2,3,\dots}}}


\RiemannZeta ⁒ @ ⁒ s = 1 s - 1 + 1 2 + βˆ‘ k = 1 n ( s + 2 ⁒ k - 2 2 ⁒ k - 1 ) ⁒ \BernoulliB ⁒ 2 ⁒ k 2 ⁒ k - ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ ∫ 1 ∞ \PeriodicBernoulliB ⁒ 2 ⁒ n + 1 ⁒ @ ⁒ x x s + 2 ⁒ n + 1 ⁒ d x \RiemannZeta @ 𝑠 1 𝑠 1 1 2 superscript subscript π‘˜ 1 𝑛 binomial 𝑠 2 π‘˜ 2 2 π‘˜ 1 \BernoulliB 2 π‘˜ 2 π‘˜ binomial 𝑠 2 𝑛 2 𝑛 1 superscript subscript 1 \PeriodicBernoulliB 2 𝑛 1 @ π‘₯ superscript π‘₯ 𝑠 2 𝑛 1 π‘₯ {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{1}{s-1}+\frac% {1}{2}+\sum_{k=1}^{n}\genfrac{(}{)}{0.0pt}{}{s+2k-2}{2k-1}\frac{\BernoulliB{2k% }}{2k}-\genfrac{(}{)}{0.0pt}{}{s+2n}{2n+1}\int_{1}^{\infty}\frac{% \PeriodicBernoulliB{2n+1}@{x}}{x^{s+2n+1}}\mathrm{d}x}}} {\displaystyle \RiemannZeta@{s} = \frac{1}{s-1} + \frac{1}{2} + \sum_{k=1}^n \binom{s+2k-2}{2k-1} \frac{\BernoulliB{2k}}{2k} - \binom{s+2n}{2n+1} \int_1^\infty \frac{\PeriodicBernoulliB{2n+1}@{x}}{x^{s+2n+1}} \diff{x} }

Constraint(s): β„œ ⁑ s > - 2 ⁒ n 𝑠 2 𝑛 {\displaystyle{\displaystyle{\displaystyle\Re{s}>-2n}}} &
n = 1 , 2 , 3 , … 𝑛 1 2 3 … {\displaystyle{\displaystyle{\displaystyle n=1,2,3,\dots}}}


Infinite Products

\RiemannZeta ⁒ @ ⁒ s = ∏ p ( 1 - p - s ) - 1 \RiemannZeta @ 𝑠 subscript product 𝑝 superscript 1 superscript 𝑝 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\prod_{p}(1-p^{-s})% ^{-1}}}} {\displaystyle \RiemannZeta@{s} = \prod_p (1 - p^{-s})^{-1} }

Constraint(s): β„œ ⁑ s > 1 𝑠 1 {\displaystyle{\displaystyle{\displaystyle\Re{s}>1}}} &
product over all primes p 𝑝 {\displaystyle{\displaystyle{\displaystyle p}}}


\RiemannZeta ⁒ @ ⁒ s = ( 2 ⁒ Ο€ ) s ⁒ e - s - ( Ξ³ ⁒ s / 2 ) 2 ⁒ ( s - 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ s + 1 ) ⁒ ∏ ρ ( 1 - s ρ ) ⁒ e s / ρ \RiemannZeta @ 𝑠 superscript 2 𝑠 𝑠 𝑠 2 2 𝑠 1 Euler-Gamma 1 2 𝑠 1 subscript product 𝜌 1 𝑠 𝜌 𝑠 𝜌 {\displaystyle{\displaystyle{\displaystyle\RiemannZeta@{s}=\frac{(2\pi)^{s}{% \mathrm{e}^{-s-(\gamma s/2)}}}{2(s-1)\Gamma\left(\tfrac{1}{2}s+1\right)}\prod_% {\rho}\left(1-\frac{s}{\rho}\right){\mathrm{e}^{s/\rho}}}}} {\displaystyle \RiemannZeta@{s} = \frac{(2 \cpi)^s \expe^{-s -(\EulerConstant s/2)}} {2(s-1) \EulerGamma@{\tfrac{1}{2} s + 1}} \prod_\rho \left( 1 - \frac{s}{\rho} \right) \expe^{s/\rho} }

Constraint(s): product over zeros ρ 𝜌 {\displaystyle{\displaystyle{\displaystyle\rho}}} of \RiemannZeta \RiemannZeta {\displaystyle{\displaystyle{\displaystyle\RiemannZeta}}} with β„œ ⁑ ρ > 0 𝜌 0 {\displaystyle{\displaystyle{\displaystyle\Re{\rho}>0}}}