Formula:DLMF:25.11:E24

From DRMF
Jump to: navigation, search


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \sum_{r \hiderel{=} 1}^{k-1} \HurwitzZeta'@{s}{\frac{r}{k}} = (k^s - 1) \RiemannZeta'@{s} + k^s \RiemannZeta@{s} \ln@@{k} }}

Constraint(s)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle s \neq 1}} &
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle k = 1,2,3,\dots}}


Note(s)

primes on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \HurwitzZeta}} denote derivatives with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle s}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Use

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \HurwitzZeta@{s}{ka} = k^{-s} \* \sum_{n=0}^{k-1} \HurwitzZeta@{s}{a+\frac{n}{k}} }}
with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle a = 1/k}} ,

multiply by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle k^s}} and differentiate.


Symbols List

& : logical and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \Sigma}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \zeta}}  : Hurwitz zeta function : http://dlmf.nist.gov/25.11#E1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \zeta}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \mathrm{ln}}}  : principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2

Bibliography

Equation (24), Section 25.11 of DLMF.

URL links

We ask users to provide relevant URL links in this space.