Formula:DLMF:25.5:E6

From DRMF
Jump to: navigation, search


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \RiemannZeta@{s} = \frac{1}{2} + \frac{1}{s-1} + \frac{1}{\EulerGamma@{s}} \int_0^\infty \left( \frac{1}{\expe^x-1} - \frac{1}{x} + \frac{1}{2} \right) \frac{x^{s-1}}{\expe^x} \diff{x} }}

Constraint(s)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \realpart{s} > -1}} &
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle s \neq 1}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Comes from

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \RiemannZeta@{s} = \frac{1}{\EulerGamma@{s}} \int_0^\infty \frac{x^{s-1}}{\expe^x-1} \diff{x} }}
by using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \expe^{-x} = (1-\expe^{-x})/(\expe^x-1)}}
in the integral Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \EulerGamma@{s} = \int_0^{\infty} \expe^{-x} x^{s-1} \diff{x}}}
(see
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \EulerGamma@{z} = \int_0^\infty \expe^{-t} t^{z-1} \diff{t} }}
) together with

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \EulerGamma@{z+1} = z \EulerGamma@{z} }} .


Symbols List

& : logical and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \zeta}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \Gamma}}  : Euler's gamma function : http://dlmf.nist.gov/5.2#E1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \int}}  : integral : http://dlmf.nist.gov/1.4#iv
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \mathrm{d}^nx}}  : differential : http://dlmf.nist.gov/1.4#iv
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \Re {z}}}  : real part : http://dlmf.nist.gov/1.9#E2

Bibliography

Equation (6), Section 25.5 of DLMF.

URL links

We ask users to provide relevant URL links in this space.