Formula:DLMF:25.8:E9

From DRMF
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \sum_{k \hiderel{=} 1}^\infty \frac{\RiemannZeta@{2k}}{(2k+1)2^{2k}} = \frac{1}{2} - \frac{1}{2} \ln 2 }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \Sigma}}  : sum : http://drmf.wmflabs.org/wiki/Definition:sum
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \zeta}}  : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{ln}}}  : principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2

Bibliography

Equation (9), Section 25.8 of DLMF.

URL links

We ask users to provide relevant URL links in this space.