# Formula:KLS:01.11:10

$\displaystyle {\displaystyle \index{Jackson's summation formula}\index{Summation formula!Jackson}\index{Summation formula!for a very-well-poised \qHyperrphis{6}{5}} \qHyperrphis{6}{5}@@{q\sqrt{a},-q\sqrt{a},a,b,c,d}{\sqrt{a},-\sqrt{a},ab^{-1}q,ac^{-1}q,ad^{-1}q}{q}{\frac{aq}{bcd}} {}=\frac{\qPochhammer{aq,ab^{-1}c^{-1}q,ab^{-1}d^{-1}q,ac^{-1}d^{-1}q}{q}{\infty}} {\qPochhammer{ab^{-1}q,ac^{-1}q,ad^{-1}q,ab^{-1}c^{-1}d^{-1}q}{q}{\infty}} }$

## Constraint(s)

$\displaystyle {\displaystyle \left|\frac{aq}{bcd}\right|<1}$

## Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

## Symbols List

$\displaystyle {\displaystyle {{}_{r}\phi_{s}}}$  : basic hypergeometric (or $\displaystyle {\displaystyle q}$ -hypergeometric) function : http://dlmf.nist.gov/17.4#E1
$\displaystyle {\displaystyle (a;q)_n}$  : $\displaystyle {\displaystyle q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1