# Formula:KLS:01.14:10

$\displaystyle {\displaystyle \qcosKLS{q}@{z}\qCosKLS{q}@{z}+\qsinKLS{q}@{z}\qSinKLS{q}@{z}=1 }$

## Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

## Symbols List

$\displaystyle {\displaystyle \mathrm{cos}_{q}}$  : $\displaystyle {\displaystyle q}$ -analogue of the cosine function $\displaystyle {\displaystyle \cos_q}$ used in KLS : http://drmf.wmflabs.org/wiki/Definition:qcosKLS
$\displaystyle {\displaystyle \mathrm{Cos}_{q}}$  : $\displaystyle {\displaystyle q}$ -analogue of the cosine function $\displaystyle {\displaystyle \mathrm{Cos}_{q}}$ used in KLS : http://drmf.wmflabs.org/wiki/Definition:qCosKLS
$\displaystyle {\displaystyle \mathrm{sin}_{q}}$  : $\displaystyle {\displaystyle q}$ -analogue of the sine function $\displaystyle {\displaystyle \sin_q}$ used in KLS : http://drmf.wmflabs.org/wiki/Definition:qsinKLS
$\displaystyle {\displaystyle \mathrm{Sin}_{q}}$  : $\displaystyle {\displaystyle q}$ -analogue of the sine function $\displaystyle {\displaystyle \mathrm{Sin}_q}$ used in KLS : http://drmf.wmflabs.org/wiki/Definition:qSinKLS