![{\displaystyle {\displaystyle
\frac{\delta\left[\omega(x;a,b,c)\ctsdualHahn{n}@{x^2}{a}{b}{c}\right]}{\delta x^2}
{}=\omega(x;a-\textstyle\frac{1}{2},b-\textstyle\frac{1}{2},c-\textstyle\frac{1}{2})
\ctsdualHahn{n+1}@{x^2}{a-\textstyle\frac{1}{2}}{b-\textstyle\frac{1}{2}}{c-\textstyle\frac{1}{2}}
}}](/index.php?title=Special:MathShowImage&hash=eb465580be5c4bbb23f0141a3aba9339&mode=latexml)
Substitution(s)
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
: continuous dual Hahn polynomial : http://dlmf.nist.gov/18.25#T1.t1.r3
: imaginary unit : http://dlmf.nist.gov/1.9.i
: Euler's gamma function : http://dlmf.nist.gov/5.2#E1
Bibliography
Equation in Section 9.3 of KLS.
URL links
We ask users to provide relevant URL links in this space.