Formula:KLS:09.15:22

From DRMF
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \lim_{N\rightarrow\infty} \sqrt{\binomial{N}{n}}\Krawtchouk{n}@{pN+x\sqrt{2p(1-p)N}}{p}{N} =\frac{\displaystyle (-1)^n\Hermite{n}@{x}}{\displaystyle\sqrt{2^nn!\left(\frac{p}{1-p}\right)^n}} }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \binom{n}{k}}}  : binomial coefficient : http://dlmf.nist.gov/1.2#E1 http://dlmf.nist.gov/26.3#SS1.p1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle K_{n}}}  : Krawtchouk polynomial : http://dlmf.nist.gov/18.19#T1.t1.r6
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle H_{n}}}  : Hermite polynomial Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle H_n}}  : http://dlmf.nist.gov/18.3#T1.t1.r28

Bibliography

Equation in Section 9.15 of KLS.

URL links

We ask users to provide relevant URL links in this space.