Formula:KLS:09.15:30

From DRMF
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \frac{\iunit^n}{2\sqrt\cpi} \int_{-\infty}^\infty y^n \expe^{-\frac14 y^2} \expe^{-\iunit xy} dy= \Hermite{n}@{x} \expe^{-x^2} }}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{i}}}  : imaginary unit : http://dlmf.nist.gov/1.9.i
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \int}}  : integral : http://dlmf.nist.gov/1.4#iv
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle H_{n}}}  : Hermite polynomial Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle H_n}}  : http://dlmf.nist.gov/18.3#T1.t1.r28

Bibliography

Equation in Section 9.15 of KLS.

URL links

We ask users to provide relevant URL links in this space.