![{\displaystyle {\displaystyle
\delta_q\left[{\tilde w}(x;a,b,c,d|q)\AskeyWilson{n}@{x}{a}{b}{c}{d}{q}\right]
{}=q^{-\frac{1}{2}(n+1)}(\expe^{\iunit\theta}-\expe^{-\iunit\theta}){\tilde w}(x;aq^{-\frac{1}{2}},bq^{-\frac{1}{2}},cq^{-\frac{1}{2}},dq^{-\frac{1}{2}}|q)
{} \AskeyWilson{n+1}@{x}{aq^{-\frac{1}{2}}}{bq^{-\frac{1}{2}}}{cq^{-\frac{1}{2}}}{dq^{-\frac{1}{2}}}{q}
}}](/index.php?title=Special:MathShowImage&hash=1082130851ab03b37d2894e98b8f0151&mode=latexml)
Substitution(s)

&
&
&

Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
: Askey-Wilson polynomial : http://dlmf.nist.gov/18.28#E1
: the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
: imaginary unit : http://dlmf.nist.gov/1.9.i
:
-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
: product : http://drmf.wmflabs.org/wiki/Definition:prod
: cosine function : http://dlmf.nist.gov/4.14#E2
Bibliography
Equation in Section 14.1 of KLS.
URL links
We ask users to provide relevant URL links in this space.