# Formula:KLS:14.07:09

$\displaystyle {\displaystyle \dualqHahn{n}@{\mu(x)}{\gamma}{\delta}{N}{q}=\frac{1}{\qPochhammer{\gamma q,q^{-N}}{q}{n}}\monicdualqHahn{n}@@{\mu(x)}{\gamma}{\delta}{N} }$

## Substitution(s)

$\displaystyle {\displaystyle \mu(x)=q^{-x}+\gamma\delta q^{x+1} =q^{-x}+q^{x+\gamma+\delta+1} =q^{-x}+\gamma\delta q^{x+1}}$ &

$\displaystyle {\displaystyle \mu(n)=q^{-n}+\alpha\beta q^{n+1}}$ &
$\displaystyle {\displaystyle \mu(x):=q^{-x}+\gamma\delta q^{x+1}}$ &
$\displaystyle {\displaystyle \mu(x)=q^{-x}+\gamma\delta q^{x+1} =q^{-x}+q^{x+\gamma+\delta+1} =q^{-x}+\gamma\delta q^{x+1}}$ &

$\displaystyle {\displaystyle \mu(n)=q^{-n}+\alpha\beta q^{n+1}}$

## Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

## Symbols List

& : logical and
$\displaystyle {\displaystyle R_{n}}$  : dual $\displaystyle {\displaystyle q}$ -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:dualqHahn
$\displaystyle {\displaystyle (a;q)_n}$  : $\displaystyle {\displaystyle q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
$\displaystyle {\displaystyle {\widehat R}_{n}}$  : monic dual $\displaystyle {\displaystyle q}$ -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:monicdualqHahn