# Formula:KLS:14.08:03

$\displaystyle {\displaystyle \AlSalamChihara{n}@{x}{a}{b}{q}=\qPochhammer{b\expe^{-\iunit\theta}}{q}{n}\expe^{\iunit n\theta}\,\qHyperrphis{2}{1}@@{q^{-n},a\expe^{\iunit\theta}}{b^{-1}q^{-n+1}\expe^{\iunit\theta}}{q}{b^{-1}q\expe^{-\iunit\theta}} }$

## Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

## Symbols List

$\displaystyle {\displaystyle Q_{n}}$  : Al-Salam-Chihara polynomial : http://drmf.wmflabs.org/wiki/Definition:AlSalamChihara
$\displaystyle {\displaystyle (a;q)_n}$  : $\displaystyle {\displaystyle q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
$\displaystyle {\displaystyle \mathrm{e}}$  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
$\displaystyle {\displaystyle \mathrm{i}}$  : imaginary unit : http://dlmf.nist.gov/1.9.i
$\displaystyle {\displaystyle {{}_{r}\phi_{s}}}$  : basic hypergeometric (or $\displaystyle {\displaystyle q}$ -hypergeometric) function : http://dlmf.nist.gov/17.4#E1