Formula:KLS:14.10:54
Substitution(s)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle w(x):=w(x;\beta|q) =\left|\frac{\qPochhammer{\expe^{2\iunit\theta}}{q}{\infty}} {\qPochhammer{\beta^{\frac{1}{2}}\expe^{\iunit\theta},\beta^{\frac{1}{2}}q^{\frac{1}{2}}\expe^{\iunit\theta} -\beta^{\frac{1}{2}}\expe^{\iunit\theta},-\beta^{\frac{1}{2}}q^{\frac{1}{2}}\expe^{\iunit\theta}}{q}{\infty}}\right|^2 =\left|\frac{\qPochhammer{\expe^{2\iunit\theta}}{q}{\infty}}{\qPochhammer{\beta\expe^{2\iunit\theta}}{q}{\infty}}\right|^2 =\frac{h(x,1)h(x,-1)h(x,q^{\frac{1}{2}})h(x,-q^{\frac{1}{2}})} {h(x,\beta^{\frac{1}{2}})h(x,\beta^{\frac{1}{2}}q^{\frac{1}{2}}) h(x,-\beta^{\frac{1}{2}})h(x,-\beta^{\frac{1}{2}}q^{\frac{1}{2}})}}}
&
&
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
: continuous -ultraspherical/Rogers polynomial : http://dlmf.nist.gov/18.28#E13
: -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
: the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
: imaginary unit : http://dlmf.nist.gov/1.9.i
: product : http://drmf.wmflabs.org/wiki/Definition:prod
: cosine function : http://dlmf.nist.gov/4.14#E2
Bibliography
Equation in Section 14.10 of KLS.
URL links
We ask users to provide relevant URL links in this space.