Formula:KLS:14.10:85

From DRMF
Jump to navigation Jump to search


lim q 1 C 2 m ( x ; - q λ | - q ) = ( λ ) m ( 1 2 λ ) m P m ( 1 2 λ , 1 2 λ - 1 ) ( 2 x 2 - 1 ) subscript 𝑞 1 continuous-q-ultraspherical-Rogers-polynomial 2 𝑚 𝑥 superscript 𝑞 𝜆 𝑞 Pochhammer-symbol 𝜆 𝑚 Pochhammer-symbol 1 2 𝜆 𝑚 Jacobi-polynomial-P 1 2 𝜆 1 2 𝜆 1 𝑚 2 superscript 𝑥 2 1 {\displaystyle{\displaystyle{\displaystyle\lim_{q\uparrow 1}C_{2m}\!\left(x;-q% ^{\lambda}\,|\,-q\right)=\frac{{\left(\lambda\right)_{m}}}{{\left(\frac{1}{2}% \lambda\right)_{m}}}P^{(\frac{1}{2}\lambda,\frac{1}{2}\lambda-1)}_{m}\left(2x^% {2}-1\right)}}}

Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

C n subscript 𝐶 𝑛 {\displaystyle{\displaystyle{\displaystyle C_{n}}}}  : continuous q 𝑞 {\displaystyle{\displaystyle{\displaystyle q}}} -ultraspherical/Rogers polynomial : http://dlmf.nist.gov/18.28#E13
( a ) n subscript 𝑎 𝑛 {\displaystyle{\displaystyle{\displaystyle(a)_{n}}}}  : Pochhammer symbol : http://dlmf.nist.gov/5.2#iii
P n ( α , β ) subscript superscript 𝑃 𝛼 𝛽 𝑛 {\displaystyle{\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}}}}  : Jacobi polynomial : http://dlmf.nist.gov/18.3#T1.t1.r3

Bibliography

Equation in Section 14.10 of KLS.

URL links

We ask users to provide relevant URL links in this space.