DLMF:13.21.E4 (Q4612)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:13.21.E4
No description defined

    Statements

    W - κ , μ ( x e π i ) = π x Γ ( κ + 1 2 ) e - μ π i ( H 2 μ ( 2 ) ( 2 x κ ) + env Y 2 μ ( 2 x κ ) O ( κ - 1 2 ) ) , Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑥 superscript 𝑒 𝜋 imaginary-unit 𝜋 𝑥 Euler-Gamma 𝜅 1 2 superscript 𝑒 𝜇 𝜋 imaginary-unit Hankel-H-2-Bessel-third-kind 2 𝜇 2 𝑥 𝜅 envelope-Bessel-Y 2 𝜇 2 𝑥 𝜅 Big-O superscript 𝜅 1 2 {\displaystyle{\displaystyle W_{-\kappa,\mu}\left(xe^{\pi\mathrm{i}}\right)=% \frac{\pi\sqrt{x}}{\Gamma\left(\kappa+\tfrac{1}{2}\right)}e^{-\mu\pi\mathrm{i}% }\*\left({H^{(2)}_{2\mu}}\left(2\sqrt{x\kappa}\right)+\mathrm{env}\mskip-2.0mu% Y_{2\mu}\left(2\sqrt{x\kappa}\right)O\left(\kappa^{-\frac{1}{2}}\right)\right% ),}}
    0 references
    DLMF:13.21.E4
    0 references
    O ( x ) Big-O 𝑥 {\displaystyle{\displaystyle O\left(\NVar{x}\right)}}
    C2.S1.E3.m2acdec
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2acdec
    0 references
    H ν ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\NVar{\nu}}}\left(\NVar{z}\right)}}
    C10.S2.E6.m2adec
    0 references
    W κ , μ ( z ) Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle W_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E3.m2abdec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2abdec
    0 references
    env Y ν ( x ) envelope-Bessel-Y 𝜈 𝑥 {\displaystyle{\displaystyle\mathrm{env}\mskip-2.0mu Y_{\NVar{\nu}}\left(\NVar% {x}\right)}}
    C2.S8.SS4.p5.m4abdec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2aadec
    0 references
    i imaginary-unit {\displaystyle{\displaystyle\mathrm{i}}}
    C1.S9.E1.m2aadec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C13.S1.XMD4.m1cdec
    0 references