DLMF:18.9.E17 (Q5613)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.9.E17
No description defined

    Statements

    ( 2 n + α + β ) ( 1 - x 2 ) d d x P n ( α , β ) ( x ) = n ( α - β - ( 2 n + α + β ) x ) P n ( α , β ) ( x ) + 2 ( n + α ) ( n + β ) P n - 1 ( α , β ) ( x ) , 2 𝑛 𝛼 𝛽 1 superscript 𝑥 2 derivative 𝑥 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 𝑛 𝛼 𝛽 2 𝑛 𝛼 𝛽 𝑥 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 2 𝑛 𝛼 𝑛 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 𝑥 {\displaystyle{\displaystyle(2n+\alpha+\beta)(1-x^{2})\frac{\mathrm{d}}{% \mathrm{d}x}P^{(\alpha,\beta)}_{n}\left(x\right)=n\left(\alpha-\beta-(2n+% \alpha+\beta)x\right)P^{(\alpha,\beta)}_{n}\left(x\right)+2(n+\alpha)(n+\beta)% P^{(\alpha,\beta)}_{n-1}\left(x\right),}}
    0 references
    DLMF:18.9.E17
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2afdec
    0 references
    d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
    C1.S4.E4.m2abdec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1qdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1pdec
    0 references